Skip to main content

Telecommunications Access Network Design

  • Chapter
Handbook of Optimization in Telecommunications

Abstract

A typical telecommunications network consists of a backbone network and multiple access networks. The investment in expanding and modernizing the access portion of the network is a significant part of the total. This chapter concentrates on describing representative models and solution approaches that are often found in access network design. Section 13.2 presents variations of concentrator location problems that play a major part in access network design. Section 13.3 focuses on current broadband access networks that deliver information at high speed, such as access networks that employ Digital Subscriber Line (DSL) and cable TV technologies. Finally, Section 13.4 describes the design of survivable access networks; in particular, access networks with dual homing and access networks that employ ring topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • K. I. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sassano. Models and solution techniques for frequency assignment problems. Technical Report 01-40, Zentrum fur Informationstechnik Berlin, December 2001. Available on http://fap.zib.de/survey/index.html.

  • G. Abe. Residential broadband. Macmillan Technical Publishing, 1997.

    Google Scholar 

  • R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: Theory, algorithms, and applications. Prentice Hall, 1993.

    Google Scholar 

  • M. Andrews and L. Zhang. Approximation algorithms for access network design. Algorithmica, 34:197–215, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Balakrishnan, T L. Magnanti, A. Shulman, and R. T. Wong. Models for planning capacity expansion in local access telecommunications networks. Annals of Operations Research, 33:239–284, 1991.

    Article  MATH  Google Scholar 

  • A. Balakrishnan, T. L. Magnanti, and R. T. Wong. A decomposition algorithm for local access telecommunications network expansion planning. Operations Research, 43: 58–76, 1995.

    Article  MATH  Google Scholar 

  • C. Behrens, T. Carpenter, M. Eiger, Y. Ho, H. Luss, G. Seymour, P. Seymour, and G. Truax. Network planning for xDSL. In Proceedings of the 16th Annual National Fiber Optic Engineers Conference, 2000.

    Google Scholar 

  • C. Behrens, T. Carpenter, M. Eiger, Y. Ho, and P. Seymour. Enhanced xDSL planning. In Proceedings of the 17th Annual National Fiber Optic Engineers Conference, 2001.

    Google Scholar 

  • D. Bienstock and I. Saniee. ATM network design: Traffic models and optimization-based heuristics. Telecommunication Systems, 16:399–421, 2001.

    Article  MATH  Google Scholar 

  • L. D. Bodin, B. L. Golden, A. A. Assad, and M. O. Ball. Routing and scheduling of vehicles and crews. Computers and Operations Research, 10(2):63–211, 1983.

    Article  MathSciNet  Google Scholar 

  • T. Carpenter, M. Eiger, P. Seymour, and D. Shallcross. Automated design of fiber-to-the-curb and hybrid fiber-coax access networks. In Proceedings of the 12th Annual National Fiber Optic Engineers Conference, 1996.

    Google Scholar 

  • T. Carpenter, M. Eiger, P. Seymour, and D. Shallcross. Node placement and sizing for copper broadband access networks. Annals of Operations Research, 106:199–228, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • W. Ciciora, J. Farmer, and D. Large. Modern cable television technology: Video, voice, and data communications. Morgan Kaufmann, 1999.

    Google Scholar 

  • M. S. Daskin. Network and discrete location: Models, algorithms, and applications. John Wiley, 1995.

    Google Scholar 

  • M. Eiger. Coaxial network modeling and engineering. In Proceedings of the International Conference on Telecommunications, volume 1, pages 207–210, 1996.

    Google Scholar 

  • L. F. Frantzeskakis and H. Luss. The network redesign problem for access telecommunications networks. Naval Research Logistics, 46:487–506, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Gavish. Topological design of telecommunications networks — Local access design methods. Annals of Operations Research, 33:17–71, 1991.

    Article  MATH  Google Scholar 

  • B. Gavish. Topological design of computer communication networks — The overall design problem. European Journal of Operations Research, 58:149–172, 1992.

    Article  MATH  Google Scholar 

  • M. Gawande, J. G. Klincewicz, and H. Luss. Design of SONET ring networks for local access. Advances in Performance Analysis, 2:159–173, 1999.

    Google Scholar 

  • A. Girard, B. Sanso, and L. Dadjo. A tabu search algorithm for access network design. Annals of Operations Research, 106:229–262, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Gouveia and M. J. Lopes. Using generalized capacitated trees for designing the topology of local access networks. Telecommunication Systems, 7:315–337, 1997.

    Article  Google Scholar 

  • R. Gupta and H. Pirkul. Hybrid fiber co-axial CATV network design with variable capacity optical network units. European Journal of Operational Research, 123: 73–85, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Jaeger and J. Goldberg. A polynomial algorithm for the equal capacity p-center problem on trees. Transportation Science, 28:167–175, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  • O. Kariv and S. Hakimi. An algorithmic approach to network location problems. I: The p-centers. SIAM Journal of Applied Mathematics, 37:513–538, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  • J. G. Klincewicz. Hub location in backbone/tributary network design: A review. Location Science, 6:307–335, 1998.

    Article  Google Scholar 

  • J. G. Klincewicz and H. Luss. A Lagrangian relaxation heuristic for capacitated facility location with single-source constraints. Journal of the Operational Research Society, 37:495–500, 1986.

    Article  MATH  Google Scholar 

  • J. G. Klincewicz, H. Luss, and D. C. K. Yan. Designing tributary networks with multiple ring families. Computers and Operations Research, 25:1145–1157, 1998.

    Article  MATH  Google Scholar 

  • C. Lee. An algorithm for the design of multitype concentrator networks. Journal of the Operational Research Society, 44:471–482, 1993.

    Article  MATH  Google Scholar 

  • H. Luss. Operations research and capacity expansion problems: A survey. Operations Research, 30:907–947, 1982.

    Article  MATH  Google Scholar 

  • T. Magnanti and L. Wolsey. Optimal trees. In M. Ball, T. Magnanti, C. Monma, and G. Nemhauser, editors, Network Routing, volume 7 of Handbooks in Operations Research and Management Science, chapter 9. North-Holland, 1995.

    Google Scholar 

  • G. R. Mateus and R. V. L. Franqueira. Model and heuristic for a generalized access network design problem. Telecommunication Systems, 15:257–271, 2000.

    Article  MATH  Google Scholar 

  • D. Mazur. Integer programming approaches to a multi-facility location problem. PhD thesis, Johns Hopkins University, 1999.

    Google Scholar 

  • R. A. Patterson and E. Rolland. Hybrid fiber coaxial network design. Operations Research, 50:538–551, 2002.

    Article  MathSciNet  Google Scholar 

  • A. Philpott, A. Mason, and J. Davenport. ‘FIDO’: Telecom’s best friend. OR/MS Today, 30(2):36–41, April 2003.

    Google Scholar 

  • H. Pirkul. Efficient algorithms for the capacitated concentrator location problem. Computers and Operations Research, 14:197–208, 1987.

    Article  MATH  Google Scholar 

  • H. Pirkul and S. Narasimhan. Hierarchical concentrator location problem. Computer Communications, 15:185–191, 1992.

    Article  Google Scholar 

  • H. Pirkul, S. Narasimhan, and P. De. Locating concentrators for primary and secondary coverage in a computer communications network. IEEE Transactions on Communications, 36:450–458, 1988.

    Article  Google Scholar 

  • R. Ramaswami and K. N. Sivarajan. Optical networks: A practical perspective. Morgan Kaufmann Publishers, second edition, 2002.

    Google Scholar 

  • C. R. Reeves, editor. Modern heuristic techniques for combinatorial problems. John Wiley, 1993.

    Google Scholar 

  • E. Rosenberg. Dual ascent for uncapacitated telecommunications network design with access, backbone and switch Costs. Telecommunication Systems, 16:423–435, 2001.

    Article  MATH  Google Scholar 

  • B. Rothfarb and M. Goldstein. The one-terminal TELPAK problem. Operations Research, 19:156–169, 1971.

    Article  MATH  Google Scholar 

  • S. Taylor, N. Boland, and A. Philpott. Optimal spanning trees with attenuation and amplification. In Proceedings of the 15th National Conference of the Australian Society for Operations Research, pages 1225–1244, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Carpenter, T., Luss, H. (2006). Telecommunications Access Network Design. In: Resende, M.G.C., Pardalos, P.M. (eds) Handbook of Optimization in Telecommunications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30165-5_13

Download citation

Publish with us

Policies and ethics