Skip to main content

Ethanol as a food preservative

  • Chapter
Food Preservatives

Abstract

Ethanol is the second member of the primary alcohol family since it has two carbon atoms. It has amphiphilic properties, with a hydrophobic moiety derived from the alkane ethane and a polar hydroxyl group. Importantly, the hydroxyl group contains a hydrogen atom that is bonded to the highly electronegative element of oxygen. Through the hydroxyl group, ethanol is capable of hydrogen bonding to fellow ethanol molecules so it is characterized, like water, as an associated liquid. This explains, firstly, the high boiling point of 78.3°C for ethanol compared with that of −88.5°C for ethane; secondly, the fact that ethanol is water soluble at all proportions although ethane is not; and thirdly, its capacity to denature proteins by disturbance of the non-covalent bonding of their tertiary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre, H., Berlot, J.P., and Charpentier, C. (1994) Effect of ethanol on membrane fluidity of protoplasts from Saccharomyces cerevisiae and Kloekera apiculata grown with or without ethanol, measured by fluorescence anisotropy. Biotechnology Techniques, 8, 295–300.

    Article  CAS  Google Scholar 

  • Alexandre, H. and Charpentier, C. (1994) The plasma membrane ATPase of Kloekera apiculata: Purification, characterization and effect of ethanol on activity. World Journal of Microbiology and Biotechnology, 10, 704–708.

    Article  CAS  Google Scholar 

  • Alexandre, H., Rousseaux, I., and Charpentier, C. (1993) Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnology and Applied Biochemistry, 20, 173–183.

    Google Scholar 

  • Ali, M.S. (1985) Rapid quantitative method for simultaneous determination of benzoic acid, sorbic acid, and four parabens in meat and non-meat products by liquid chromatography. Journal of the Association of Official Analytical Chemists, 68, 488–492.

    CAS  Google Scholar 

  • Anon. (1974) Federal Register 39, 34185.

    Google Scholar 

  • Ashai Dunka Kogyo (1978) Japanese patent number 161441.

    Google Scholar 

  • Ballesteros, S.A., Chirife, J., and Bozzini, J.P. (1992) Antibacterial effects and cell morphological changes in Staphylococcus aureus subjected to low ethanol concentrations. Journal of Food Science, 58, 435–438.

    Article  Google Scholar 

  • Ballesteros, S.A., Chirife, J., and Bozzini, J.P. (1993) Specific solute effects on Staphylococcus aureus cells subjected to reduced water activity. International Journal of Food Microbiology, 20, 51–66.

    Article  CAS  Google Scholar 

  • Barker, C. and Park, S.F. (2001) Sensitization of Listeria monocytogenes to low pH, organic acids, and osmotic stress by ethanol. Applied and Environmental Microbiology, 67, 1594–1600.

    Article  CAS  Google Scholar 

  • Beavan, M.J., Charpentier, C., and Rose, A.H. (1982) Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431. Journal of General Microbiology, 128, 1447–1455.

    Google Scholar 

  • Berger, R.G. (1992) Modern storage technologies for the postharvest flavour preservation of fruits. Ernahrung, 16, 487–489.

    CAS  Google Scholar 

  • Black, R.G., Quail, K.J., Reyes, V., Kuzyk, M., and Ruddick, L. (1993) Shelf-life extension of pita bread by modified atmosphere packaging. Food Technology in Australia, 45, 387–391.

    Google Scholar 

  • BOgh-Sorensen, L. (1994) Food preservation by combined processes: Final report. FLAIR Concerted Action No. 7, Subgroup B, Commission of the European Communities, Luxembourg CEC, pp. 7–24.

    Google Scholar 

  • Bourgeois, C.F. and Czomomaz, A.M. (1982) The use of ascorbyl palmitate, alpha-tocopherol and phospholipids as antioxidants in lard. Révue Français des Corps Gras, 29, 111–166 and 133–134.

    Google Scholar 

  • Brewer, R.K., Adams, M.R., and Park, S.F. (2002) Enhanced inactivation of Listeria monocytogenes by nisin in the presence of ethanol. Letters in Applied Microbiology, 34, 18–21.

    Article  CAS  Google Scholar 

  • Brown, S.W., Oliver, S.G., Harrison, D.E.F., and Righelato, R.C. (1981) Ethanol inhibition of yeast growth and fermentation — differences in the magnitude and complexity of effect. European Journal of Applied Microbiology and Biotechnology, 11, 151–155.

    Article  CAS  Google Scholar 

  • Buchanan, R.L. and Bagi, L.K. (1997) Effect of water activity and humectant identity on the growth kinetics of Escherichia coli 0157: H7. Food Microbiology, 14, 413–423.

    Article  CAS  Google Scholar 

  • Capucho, I. and San Romäo, M.V. (1994) Effect of ethanol and fatty acids on malolactic activity of Leuconostoc oenos. Applied Microbiology and Biotechnology, 42, 391–395.

    CAS  Google Scholar 

  • Carey, V.C. and Ingram, L.O. (1983) Lipid composition of Zymomonas mobilis: Effects of ethanol and glucose. Journal of Bacteriology, 154, 1291–1300.

    CAS  Google Scholar 

  • Cartwright, C.P., Juroszek, J.-R., Beavan, M.J., Ruby, F.M.S., De Morais, S.M.F., and Rose, A.H. (1986) Ethanol dissipates the proton-motive force across the plasma membrane of Saccharomyces cerevisiae. Journal of General Microbiology, 132, 369–377.

    CAS  Google Scholar 

  • Cartwright, C.P., Veazey, F.J., and Rose, A.H. (1987) Effect of ethanol on activity of the plasma-membrane ATPase in, and accumulation of glycine by, Saccharomyces cerevisiae. Journal of General Microbiology, 133, 857–865.

    CAS  Google Scholar 

  • Casey, G.P. and Ingledew, W.M. (1986) Ethanol tolerance in yeasts. Critical Reviews in Microbiology, 13, 219–280.

    Article  CAS  Google Scholar 

  • Chi, Z. and Arneborg, N. (2000) Saccharomyces cerevisiae strains with different degrees of ethanol tolerance exhibit different adaptive responses to produced ethanol. Journal of Industrial Microbiology and Biotechnology, 24, 75–78.

    CAS  Google Scholar 

  • Clark, D.P. and Beard, J.P. (1979) Altered phospholipid composition in mutants of Escherichia coli sensitive or resistant to organic solvents. Journal of General Microbiology, 113, 267–274.

    Article  CAS  Google Scholar 

  • Cony, J.E.L. (1987) Relationships of water activity to fungal growth. In Food and Beverage Mycology, 2nd edn (ed. L.R. Beuchat ), AVI Publishing, New York, pp. 51–88.

    Google Scholar 

  • Cullis, P.R. and de Kruijff, B. (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochimica et Biophysica Acta, 599, 399–420.

    Article  Google Scholar 

  • D’ Amore, T. and Stewart, G.G. (1987) Ethanol tolerance of yeast. Enzyme and Microbial Technology, 9, 322–329.

    Article  Google Scholar 

  • del Castillo Agudo, L. (1992) Lipid content of Saccharomyces cerevisiae strains with different degrees of ethanol tolerance. Applied Microbiology and Biotechnology, 37, 647–651.

    Google Scholar 

  • Diefenbach, R., Heipieper, H.J., and Keweloh, H. (1992) The conversion of cis-into trans-unsaturated fatty acids in Pseudomonas putida P8: Evidence for a role in the regulation of membrane fluidity. Applied Microbiology and Biotechnology, 38, 382–387.

    Article  CAS  Google Scholar 

  • Dombek, K.M. and Ingram, L.O. (1984) Effects of ethanol on the Escherichia coli plasma membrane. Journal of Bacteriology, 157, 233–239.

    CAS  Google Scholar 

  • Eaton, L.C., Tedder, T.F., and Ingram, L.O. (1982) Effects of fatty acid composition on the sensitivity of membrane functions to ethanol in Escherichia coli. Substance and Alcohol Actions/Misuse, 3, 77–87.

    CAS  Google Scholar 

  • Eliaz, A.W., Chapman, D., and Ewing, D.F. (1976) Phospholipid phase transition. Effects of n-alcohols, n-monocarboxylic acids, phenyl-alkyl alcohols and quaternary ammonium compounds. Biochimica et Biophysica Acta, 448, 220–230.

    Article  Google Scholar 

  • Fennéma O.R. (1985) Water and ice. In Food Chemistry, 2nd edn (ed. O. Fennema ), Marcel Dekker, New York, pp. 23–67.

    Google Scholar 

  • Ferro Fontans, C. and Chirife, J. (1981) The evaluation of water in aqueous solutions from freezing point depression. Journal of Food Technology, 16, 21–30.

    Article  Google Scholar 

  • Franke, I., Wijma, E., and Bouma, K. (2002) Shelf life extension of pre-baked buns by an active packaging ethanol emitter. Food Additives and Contaminants, 19, 314–322.

    Article  CAS  Google Scholar 

  • Franks, F. (1991) Water activity: A credible measure of food safety and quality? Trends in Food Science and Technology, 2, 68–72.

    Article  Google Scholar 

  • Freund Industrial Co. Ltd (1980) Japanese patent number 043567.

    Google Scholar 

  • Freund Industrial Co. Ltd (1981) Japanese patent number 108712.

    Google Scholar 

  • Fujii, M., Hatakeyama, M., and Hiraki, J. (1988) Ethanol preparations for food preservation. Chisso Corp. British patent number GB 2 222 172.

    Google Scholar 

  • Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H., and Waring, M.T. (1981) The Molecular Basis of Antibiotic Action, 2nd edn, Wiley, Chichester.

    Google Scholar 

  • Geiges, O. (1981) Konservieren von Brot mit Athylalkohol. 1. Mitteilung: Methoden zur Bekâmpfung des mikrobiellen Brotverderbs. Getreide Mehl and Brot, 35, 244–248.

    CAS  Google Scholar 

  • Geiges, O., Gindlach, J., and Kuchen, W. (1981) Konservieren von Brot mit Athylalkohol. III. Mitteilung: Zur Technik der Brotkonservierung mit Alkohol. Getreide Mehl and Brot, 35, 306–309.

    CAS  Google Scholar 

  • Geiges, O. and Kuchen, W. (1981) Konservieren von Brot mit Athylalkohol. 2. Mitteilung: Grundlagen zur Brotkonservierung mit Athylalkohol. Getreide Mehl und Brot, 35, 263–265.

    CAS  Google Scholar 

  • Gennadios, A., Weller, C.L., and Testin, R.F. (1993) Modification of physical and barrier properties of edible wheat gluten-based films. Cereal Chemistry, 70, 426–429.

    CAS  Google Scholar 

  • Gertz, C. and Herrmann, K. (1983) Determination of sorbic-acid, benzoic-acid, and parahydroxybenzoate esters in foods using HPLC. Deutsche Lebensmittel-Rundschlau, 79, 331–334.

    CAS  Google Scholar 

  • Gläser, H.-U. and Höfer, M. (1990) Effect of ethanol on cell growth, metabolism and cation fluxes in the yeast Metschnikowia reukaufii. Journal of General Microbiology, 136, 1265–1270.

    Google Scholar 

  • Gould, G.W. (1988) Interference with homeostasis — food. In Homeostatic Mechanisms in Microorganisms (eds

    Google Scholar 

  • R. Whittenbury, G.W. Gould, J.G. Banks, and R.G. Board), Bath University Press, Bath, UK, pp. 220–228.

    Google Scholar 

  • Guijarro, J.M. and Lagunas, R. (1984) Saccharomyces cerevisiae does not accumulate ethanol against a concen-tration gradient. Journal of Bacteriology, 160, 874–878.

    CAS  Google Scholar 

  • Gulati, M., Dhamija, S.S., Gera, R., and Yadav, B.S. (1997) Isolation and genetic analysis of ethanol-sensitive mutants of thermotolerant Kluyveromyces marxianus. Biotechnology Techniques, 11, 343–346.

    Article  CAS  Google Scholar 

  • Harwood, J.L. and Russell, N.J. (1984) Lipids in Plants and Microbes, George Allen and Unwin, London.

    Book  Google Scholar 

  • Hayashida, S., Feng, D., and Hong, M. (1975) Physiological properties of yeast cells grown in the proteolipid-supplemented media. Agricultural Biology and Chemistry, 39, 1025–1031.

    Article  CAS  Google Scholar 

  • Heipieper, H.J. and de Bont, J.A.M. (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Applied and Environmental Microbiology, 60, 4440–4444.

    CAS  Google Scholar 

  • Heipieper, H.J., Isken, S., and Saliola, M. (2000) Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis. Research in Microbiology, 151, 777–784.

    CAS  Google Scholar 

  • Hermans, M.A.F., Neuss, B., and Sahm, H. (1991) Content and composition of hopanoids in Zymomonas mobilis under various growth conditions. Journal of Bacteriology, 173, 5592–5595.

    CAS  Google Scholar 

  • Hodge, D.G., Robb, J., and Chester, A.J. (1978) Progress in cake staling research. Flour Milling and Baking Research Association Bulletin, 6, 215–224.

    Google Scholar 

  • Hoshino, J. (1994) Prevention of food degradation and food poisoning. Mitsubishi Gas Chem. Co. Japanese patent number 6–217746.

    Google Scholar 

  • Imai, S. (1994) Method for preserving food. Nippon Kayaku Co., Japanese patent number 6–15388. Ingram, L.O. (1976) Adaptation of membrane lipids to alcohols. Journal of Bacteriology, 125, 670–678.

    Google Scholar 

  • Ingram, L.O. (1981) Mechanism of lysis of Escherichia coli by ethanol and other chaotropic agents. Journal of Bacteriology, 14, 331–336.

    Google Scholar 

  • Ingram, L.O. (1982) Regulation of fatty acid composition in Escherichia coli: A proposed common mechanism for changes induced by ethanol, chaotropic agents, and a reduction of growth temperature. Journal of Bacteriology, 149, 166–172.

    CAS  Google Scholar 

  • Ingram, L.O. (1986) Microbial tolerance to alcohols: Role of the cell membrane. Trends in Biochemistry and Biotechnology, 4, 41–44.

    Google Scholar 

  • Ingram, L.O. (1990) Ethanol tolerance in bacteria. Critical Reviews in Biotechnology, 9, 305–319.

    Article  CAS  Google Scholar 

  • Ingram, L.O. and Buttke, T.M. (1984) Effects of alcohols on micro-organisms. Advances in Microbial Physiology, 25, 253–300.

    Article  CAS  Google Scholar 

  • Ingram, L.O., Vreeland, N.S., and Eaton, L.C. (1980) Alcohol tolerance in Escherichia coli. Pharmacology, Biochemistry and Behaviour, 13 (Suppl. 1), 191–195.

    Article  CAS  Google Scholar 

  • Ishii, T., Onishi, T., Yoshimura, M., and Sakagami, K. (1995) Ethanol preparation. Sanei Gen. FFI Inc. Japanese patent number 7–194355.

    Google Scholar 

  • Iwami, K., Hattori, M., Nakatani, S., and Ibuki, F. (1987) Spray-dried gliadin powders inclusive of linoleic acid (microcapsules): Their preservability, digestibility and application to bread making. Agricultural and Biological Chemistry, 51, 3301–3307.

    Article  CAS  Google Scholar 

  • Janoff, A.S. and Millar, K.W. (1982) A critical assessment of the lipid theories of general anaesthetic action. In Biological Membranes (ed. D. Chapman ), Academic Press, New York, pp. 417–476.

    Google Scholar 

  • Jiminez, J. and Oballe, J. (1994) Ethanol-hypersensitive and ethanol-dependent cdc mutants in Schizosaccharomyces pombe. Molecular and General Genetics, 245, 86–95.

    Article  Google Scholar 

  • Jiménez, J. and van Uden, N. (1985) Use of extracellular acidification for the rapid testing of ethanol tolerance in yeasts. Biotechnology and Bioengineering, 27, 1596–1598.

    Article  Google Scholar 

  • Jones, R.P. and Greenfield, P.F. (1987) Ethanol and fluidity of the yeast plasma membrane. Yeast, 3, 223–232. Kajiwara, S., Shirai, A., Fujii, T., Toguri, T., Nakamura, K., and Ohtaguchi, K. (1996) Polyunsaturated fatty acid biosynthesis in Saccharomyces cerevisiae: Expression of ethanol tolerance and the FAD2 gene from Arabidopsis thaliana. Applied and Environmental Microbiology, 62, 4309–4313.

    Google Scholar 

  • Kajiwara, S., Suga, K., Sone, H., and Nakamura, K. (2000) Improved ethanol tolerance of Saccharomyces cerevisiae strains by increases in fatty acid unsaturation via metabolic engineering. Biotechnology Letters, 22, 1839–1843.

    Article  CAS  Google Scholar 

  • Kalathenos, P. (1995) Predictive modelling of wine spoilage microorganisms. PhD Thesis, University of Reading, England.

    Google Scholar 

  • Kalathenos, P., Baranyi, J., Sutherland, J.P., and Roberts, T.A. (1995). A response surface study on the role of some environmental factors affecting the growth of Saccharomyces cerevisiae. International Journal of Food Microbiology, 25, 63–74.

    Article  CAS  Google Scholar 

  • Keweloh, H. and Heipieper, H.J. (1996) Trans unsaturated fatty acids in bacteria. Lipids, 31, 129–137.

    CAS  Google Scholar 

  • Koukou, A.I., Tsoukatos, D., and Drainas, C. (1990) Effect of ethanol on the phospholipid and fatty acid content of Schizosaccharomyces pombe membranes. Journal of General Microbiology, 136, 1271–1277.

    Article  CAS  Google Scholar 

  • Kuchen, W. (1963) Verfahren zur Konsiervierung von Gebâck, insbesondere Brot. Swiss patent number 369087. Kunkee, E.R. and Amerine, M.A. (1968) Sugar and alcohol stabilization of yeast in sweet wine. Applied Microbiology, 16, 1067–1075.

    Google Scholar 

  • Kurita, N., Koike, S. (1983) Synergistic antimicrobial effect of ethanol, sodium chloride, acetic acid and essential oil components. Agricultural and Biological Chemistry, 47, 67–75.

    Article  CAS  Google Scholar 

  • Larson, E.L. and Morton, H.E. (1991) Alcohols. In Disinfection, Sterilisation and Preservation, 4th edn (ed. S.S. Block ), Lea and Febiger, Philadelphia, USA, pp. 191–203.

    Google Scholar 

  • Ledo, C., Uden, N. (1982) Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnology and Bioengineering, 24, 2601–2604.

    Article  Google Scholar 

  • Ledo, C. and van Uden, N. (1984) Effects of ethanol and other alkanols on the general amino acid permease of Saccharomyces cerevisiae. Biotechnology and Bioengineering, 26, 403–405.

    Article  Google Scholar 

  • Lide, R.D. (1992) Handbook of Chemistry and Physics, 72nd edn, CRC Press, Boca Raton, USA. Lindquist, S. (1986) The heat-shock response. Annual Review of Biochemistry, 55, 1151–1191.

    Google Scholar 

  • Lorenz, M.C., Shane Cutler, N., and Heitman, J. (2000) Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Molecular Biology of the Cell, 11, 183–189.

    CAS  Google Scholar 

  • Lou, Y. and Yousef, A.E. (1997) Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Applied and Environmental Microbiology, 63, 1252–1255.

    CAS  Google Scholar 

  • Louveiro, V. and Ferreira, H.G. (1983) On the intracellular accumulation of ethanol in yeast. Biotechnology and Bioengineering, 25, 2263–2269.

    Article  Google Scholar 

  • Martin-Rendón, E., Jiminez, J., and Benitez, T. (1989) Ethanol inhibition of Saccharomyces and Candida enzymes. Current Genetics, 15, 7–16.

    Google Scholar 

  • Mauricio, J.C. and Salmon, J.M. (1992) Apparent loss of sugar transport activity in Saccharomyces cerevisiae may mainly account for maximum ethanol production during alcoholic fermentation. Biotechnology Letters, 14, 577–582.

    Article  CAS  Google Scholar 

  • Mbugua, S.K. and Karuri, E.G. (1994) Preservation of beef using bacteriostatic chemicals and solar drying. Food and Nutrition Bulletin, 15, 262–268.

    Google Scholar 

  • Michel, G.P.F. and Starka, J. (1986) Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. Journal of Bacteriology, 165, 1040–1042.

    CAS  Google Scholar 

  • Millar, D G, Griffiths-Smith, K., Algar, E., and Scopes, R.K. (1982) Activity and stability of glycolytic enzymes in the presence of ethanol. Biotechnology Letters, 4, 601–606.

    Article  CAS  Google Scholar 

  • Mishra, P. and Prasad, R. (1989) Role of phospholipid head groups in ethanol tolerance of Saccharomyces cerevisiae. Journal of General Microbiology, 134, 3205–3211.

    Google Scholar 

  • Mitsubishi Gas Chemical Industries (1980) Japanese patent number 153468.

    Google Scholar 

  • Monteiro, G.A., Supply, P., Goffeau, A., and Sâ-Correia, I. (1994) The in vivo activation of Saccharomyces cerevisiae plasma membrane 1+-ATPase by ethanol depends on the expression of the PMAI gene, but not of the PMA2 gene. Yeast, 10, 1439–1446.

    Article  CAS  Google Scholar 

  • Moreau, R.A., Powell, M.J., Fett, W.F., and Whitaker, B.D. (1997) The effect of ethanol and oxygen on the growth of Zymomonas mobilis and the levels of hopanoids and other membrane lipids. Current Microbiology, 35, 124–128. Moulin, G., Boze, H., and Galzy, P. (1984) Inhibition of alcoholic fermentation. Biotechnology and Genetic Engineering Reviews, 2, 365–382.

    Google Scholar 

  • Naito, S., Okada, Y., and Yamaguchi, N. (1991) Studies on the behaviour of microorganisms in sponge cake during anaerobic storage (Studies on protection against microbiological deterioration of packaged food Part IV). Packaging Technology and Science, 4, 333–344.

    Article  Google Scholar 

  • Nippon Polycello Co. (1978) Japanese patent number 016118.

    Google Scholar 

  • Novejarque Conde, J.A. (1993) Method for producing a preservative for food products. Novesol. European patent number 0:606:471. World patent number 93 /07768.

    Google Scholar 

  • Novotny, C., Flieger, M., Panos, J., and Karst, F. (1992) Effect of 5,7-unsaturated sterols on ethanol tolerance in Saccharomyces cerevisiae. Biotechnology and Applied Biochemistry, 15, 314–320.

    CAS  Google Scholar 

  • Ogawa, Y., Nitta, A., Uchiyama, H., Imamura, T., Shimoi, H., and Ito, K. (2000) Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. Journal of Bioscience and Bioengineering, 90, 313–320.

    CAS  Google Scholar 

  • Ohta, Y. and Takatani, K. (1982) Preservative effects of allylmustard oil and ethanol on “Hiroshimanazuke.” Nippon Shokuhin Kogyo Gakkaishi, 29, 672–677.

    Article  CAS  Google Scholar 

  • Ooraikul, B. (1991) Modified atmosphere packaging of bakery products. In Modified Atmosphere Packaging of Food (eds B. Ooraikul and M.E. Stiles ), Ellis Horwood, Chichester, pp. 49–117.

    Chapter  Google Scholar 

  • Orre, K. (1987) Deep freezing solution and deep freezing procedure (freezing using an ethanol solution, which may contain preserving agents). Pentti Porkka OY Finland. European patent number 0 290 666.

    Google Scholar 

  • Osman, Y.A. and Ingram, L.O. (1985) Mechanism of ethanol inhibition of fermentation in Zygomonas mobilis CP4. Journal of Bacteriology, 164, 173–180.

    CAS  Google Scholar 

  • Ough, C.S., Langbehn, L.L., and Stafford, P.A. (1978) Influence of pH and ethanol on the effectiveness of dimethyl dicarbonate in controlling yeast growth in model wine systems. American Journal of Enology and Viticulture, 29, 60–62.

    CAS  Google Scholar 

  • Pafumi, J. and Durham, R. (1987) Cake shelf life extension. Food Technology in Australia, 39, 286–287.

    Google Scholar 

  • Pierce, G.E., Litchfield, J.H., and Lipinsky, E.S. (1980) Evaluation of the feasibility of sequential fermentation of sugars for production of ethanol. Developments in Industrial Microbiology, 22, 703–710.

    Google Scholar 

  • Piper, P.W., Taija, K., Panaretou, B., Moradas-Ferreira, P., Byrne, K., Praekelt, U.M., Récnacq, M., and

    Google Scholar 

  • Boucherie, H. (1994) Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology, 140, 3031–3038. Plenons, R.F., Staff, C.H., and Cameron, F.R. (1976) US patent number 3979525.

    Google Scholar 

  • Rand, R.P., Fuller, N.L., Gruner, S.M., and Pasagian, V.A. (1990) Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry, 29, 76–87.

    Article  CAS  Google Scholar 

  • Rhan, O. (1929) The decreasing rate of fermentation. Journal of Bacteriology, 18, 207–226.

    Google Scholar 

  • Rice, J. (1989). Gas-emitting wafers — a cost-effective MAP approach. Food Processing, 50, 42.

    Google Scholar 

  • Richards, O.W. (1928) Potentially unlimited multiplication of yeast with constant environment, and the limiting of growth by changing environment. Journal of General Physiology, 11, 525–538.

    Article  CAS  Google Scholar 

  • Rosa, M.F. and SA-Correia, I. (1991) In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 57, 830–835.

    CAS  Google Scholar 

  • Rosa, M.F. and SA-Correia, I. (1992) Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevisiae. Enzyme and Microbial Technology, 14, 23–27.

    Article  CAS  Google Scholar 

  • Rose, A.H. (1980) Recent research on industrially important strains of Saccharomyces cerevisiae. In Biology and Activity of Yeasts (eds F.A. Skinner, S.M. Passmore, and R.R. Davenport ), Academic Press, London, pp. 103–121.

    Google Scholar 

  • Rose, A.H. (1993) Composition of the envelope layers of Saccharomyces cerevisiae in relation to flocculation and ethanol tolerance. Journal of Applied Bacteriology, Symposium Supplement, 74, 1105–1185.

    Google Scholar 

  • Russell, A.D. (1990) The bacterial spore and chemical sporicidal agents. Clinical Microbiology Reviews, 3, 99–111.

    CAS  Google Scholar 

  • Russell, N.J. (1989) Functions of lipids: Structural roles and membrane functions. In Microbial Lipids, Vol. 2 (eds C. Ratledge and S.G. Wilkinson ), Academic Press, London, pp. 279–365.

    Google Scholar 

  • Russell, P.L. (1983) A kinetic study of bread staling by differential calorimetry. The effect of painting loaves with ethanol. Starch, 35, 277–281.

    Article  CAS  Google Scholar 

  • Salgueiro, S.P., SA-Correia, I., and Novais, J.M. (1988) Ethanol induced leakage in Saccharomyces cerevisiae — kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity. Applied and Environmental Microbiology, 54, 903–909.

    Google Scholar 

  • Salminen, A., Latva-Kala, K., Randell, K., Hurme, E., Linko, P., and Ahvenainen, R. (1996) The effect of ethanol and oxygen absorption on the self-life of packed sliced rye bread. Packaging Technology and Science, 9, 29–42.

    Article  CAS  Google Scholar 

  • Sapers, G.M. (1994) Color characteristics and stability of nonbleeding cocktail cherries dyed with carotenoid pigments. Journal of Food Science, 59, 135–138.

    Article  CAS  Google Scholar 

  • Schmidt, A., Bringer-Meyer, S., Poralla, K., and Sahm, H. (1986) Effect of alcohols and temperature on the hopanoid content of Zymomonas mobilis. Applied Microbiology and Biotechnology, 25, 32–36.

    Article  CAS  Google Scholar 

  • Schoberth, S.M., Chapman, B.E., Kuchel, P.W., Wittig, R.M., Grotendorst, J., Jansen, P., and de Graf, A.A. (1996) Ethanol transport in Zymomonas mobilis measured using in vivo nuclear magnetic resonance spin transfer. Journal of Bacteriology, 178, 1756–1761.

    CAS  Google Scholar 

  • Seiler, D.A. (1979) Ethyl alcohol as an antimicrobial and antistaling agent for bakery products. Flour Milling and Baking Research Association Bulletin, 2, 64–71.

    Google Scholar 

  • Setlow, B., Loshon, C.A., Genest, P.C., Cowan, A.E., Setlow, C., and Setlow, P. (2002) Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. Journal of Applied Microbiology, 92, 362–375.

    Article  CAS  Google Scholar 

  • Shapero, M., Nelson, D.A., and Labuza, T.P. (1978) Ethanol inhibition of Staphylococcus aureus at limited water activity. Journal of Food Science, 43, 1467–1469.

    Article  CAS  Google Scholar 

  • Sousa, M.J., Miranda, L., Côrte-Real, M., and Ledo, C. (1996) Transport of acetic acid in Zygosaccharomyces bailiff: Effects of ethanol and their implications on the resistance of the yeast to acidic environments. Applied and Environmental Microbiology, 62, 3152–3157.

    CAS  Google Scholar 

  • Stowell, M.H.B., McClard, R.W., and Yatvin, M.B. (1994) Effects of membrane-lipid composition on nascent protein translocation induced by heat and ethanol in Escherichia coli. Journal of Thermal Biology, 19, 111–122.

    CAS  Google Scholar 

  • Suenaga, H., Yamaguchi, T., Furuta, M., and Ohta, S. (1995) Test of preservation of raw noodles or sandwiches using “sugar-resistant” yeast. Nippon Shokuhin Kagaku Kogaku Kaishi, 42, 332–337.

    Google Scholar 

  • Thomas, D.S., Hossack, J.A., and Rose, A.H. (1978) Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Archives of Microbiology, 117, 239–245.

    Article  CAS  Google Scholar 

  • Toyama, R. and Sekizawa, N. (1987) Preservation of semi-dried Japanese noodle by addition of ethanol. Nippon Shokuhin Kogyo Gakkaishi, 34, 586–591.

    Article  Google Scholar 

  • Toyama, R., Sekimura, T., and Sekizawa, N. (1994) Remaining in manufacture and preservative effect of ethanol added to “Reimen” (Korean noodle). Nippon Shokuhin Kogyo Gakkaishi, 41, 299–303.

    Article  CAS  Google Scholar 

  • UK Bread and Flour Regulations (1984) Sl 1984 No. 1304.

    Google Scholar 

  • UK Food Labelling Regulations (1984) Sl 1984 No. 1305.

    Google Scholar 

  • van Uden, N. (1989) Alcohol Toxicity in Yeasts and Bacteria. CRC Press, Boca Raton.

    Google Scholar 

  • Viegas, C.A. and Sâ-Correia, I. (1997) Effects of low temperatures (9–33 degrees C) and pH (3.3–5.7) in the loss of Saccharomyces cerevisiae viability by combining lethal concentrations of ethanol, with octanoic and decanoic acids. International Journal of Food Microbiology, 34, 267–277.

    Article  CAS  Google Scholar 

  • Vora, H.M. and Sidhu, J.S. (1987) Effect of varying concentrations of ethyl alcohol and carbon dioxide on the shelf life of bread. Chemie Mikrobiologie Technologie der Lebensmittel, 11, 56–59.

    CAS  Google Scholar 

  • Vulié, M. and Kolter, R. (2002) Alcohol-induced delay of viability loss in stationary-phase cultures of Escherichia coli. Journal of Bacteriology, 184, 2898–2905.

    Google Scholar 

  • Walker-Caprioglio, H.M., Rodriguez, R.J., and Parks, L.W. (1985) Recovery of Saccharomyces cerevisiae from ethanol-induced growth inhibition. Applied and Environmental Microbiology, 50, 685–689.

    CAS  Google Scholar 

  • Wieslander, A., Rilfors, L., and Lindblom, G. (1986) Metabolic changes of membrane lipid composition in Acholeplasma laidlawii by hydrocarbons, alcohols, and detergents: arguments for effects of lipid packing. Biochemistry, 25, 7511–7517.

    Article  CAS  Google Scholar 

  • Yamamoto, Y., Higashi, I.K., and Yoshii, H. (1984) Inhibitory activity of acetic acid on yeasts. Nippon Shokuhin Kogyo Gakkaishi, 31, 772–776.

    Article  CAS  Google Scholar 

  • Yamamoto, S. and Takamine, K. (1994) Liquid seasoning serving for discolour protection and freshness keeping of vegetable. Torigoe Seifun KK. Japanese Patent 6–276931.

    Google Scholar 

  • Yano, T., Kusumi, Y., Yamamoto, K., Kumagai, H., and Tochikura, T. (1991) Preservation of raw fish and meat. Agricultural and Biological Chemistry, 55, 2063–2070.

    Article  CAS  Google Scholar 

  • You, K.M., Rosenfield, C.-L., and Knipple, D.C. (2003) Ethanol tolerance in the yeast Sacharomyces cerevisiae is dependent on cellular oleic acid content. Applied and Environmental Microbiology, 69, 1499–1503.

    Article  CAS  Google Scholar 

  • Yura, T., Nagai, H., and Mori, H. (1993) Regulation of the heat-shock response in bacteria. Annual Review of Microbiology, 47, 321–350.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Kalathenos, P., Russell, N.J. (2003). Ethanol as a food preservative. In: Russell, N.J., Gould, G.W. (eds) Food Preservatives. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30042-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-30042-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1006-9

  • Online ISBN: 978-0-387-30042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics