Proving and Modelling

  • Gila Hanna
  • Hans Niels Jahnke
Part of the New ICMI Study Series book series (NISS, volume 10)


This paper discusses the complementary roles of modelling and proof. The two are inseparably linked, and the authors argue that this should be reflected in teaching. Two examples are discussed. The first describes a teaching unit using arguments from statics to prove geometrical theorems, the second discusses the role of thought experiments in general and a specific thought experiment for deriving Pick’s formula.


Thought Experiment Mathematical Proof Interior Angle Mathematical Explanation Deductive Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aigner, M., & Ziegler, G. (2002). Das BUCH der Beweise. Heidelberg/Berlin: Springer Verlag.Google Scholar
  2. Aigner, M., & Ziegler, G. (2003). Brillanten für das „BUCH der Beweise“. Scholar
  3. Blatter, C. (1997). Another Proof of Pick’s Area Theorem. Mathematics Magazine, 70(3), 200.CrossRefGoogle Scholar
  4. Blum, W., & Kirsch, A. (1991). Preformal proving: Examples and reflexions. Educational Studies in Mathematics, 22(2), 183–203.CrossRefGoogle Scholar
  5. Blum, W. (2003). On the Role of “Grundvorstellungen” for Reality-Related Proofs Examples and Reflections, Scholar
  6. de Villiers, M. (2002). Developing Understanding for Different Roles of Proof in Dynamic Geometry, Scholar
  7. Hanna, G. (1990). Some Pedagogical Aspects of Proof. Interchange 21(1), 6–13.CrossRefGoogle Scholar
  8. Hanna, G., & Jahnke, H. N. (1996). Proof and Proving. In Bishop, A. J. et al. (Eds.), International Handbook of Mathematics Education (pp. 877–908). Dordrecht: Kluwer.Google Scholar
  9. Hanna, G., & Jahnke, H. N. (1993). Proof and application. Educational Studies in Mathematics, 24(4), 421–439.CrossRefGoogle Scholar
  10. Hanna, G., & Jahnke, H. N. (2002). Arguments from physics in mathematical proofs: An educational perspective. For the learning of mathematics, 22(3), 38–45.Google Scholar
  11. Hanna, G., DeBruyn, Y., Sidoli, N., & Lomas, D. (2004). Teaching proof in the context of physics. Zentralblatt für Didaktik der Mathematik, International reviews on mathematical education, 36(3), 82–90.CrossRefGoogle Scholar
  12. Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in Mathematics, 24(4), 389–399.CrossRefGoogle Scholar
  13. Mancosu, P. (2001). Mathematical explanation: Problems and prospects. Topoi, 20, 97–117.CrossRefGoogle Scholar
  14. Mancosu, P., Jørgensen, K. F., & Pedersen, S. A. (Eds.). (2005). Visualization, Explanation and Reasoning Styles in Mathematics. Dordrecht: Springer.Google Scholar
  15. Manin, Yu. (1998). Truth, rigour, and common sense. In H. G. Dales, & G. Oliveri (Eds.), Truth in mathematics (pp. 147–159). Oxford: Oxford University Press.Google Scholar
  16. Polya, G. (1981). Mathematical discovery: On understanding, learning and teaching problem solving (2 vols.; combined ed.). New York: John Wiley & Sons.Google Scholar
  17. Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(3), 5–41.Google Scholar
  18. Rota, G-C. (1997). The phenomenology of mathematical proof. Synthese, 3(2), 183–197.CrossRefGoogle Scholar
  19. Tall, D. (1998). The cognitive development of proof: Is mathematical proof for all or for some. Paper presented at the UCSMP conference. Chicago, USA.Google Scholar
  20. Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177.CrossRefGoogle Scholar
  21. Uspenskii. V. A. (1961). Some Applications of Mechanics to Mathematics. New York: Balis-dell Publishing Company.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Gila Hanna
    • 1
  • Hans Niels Jahnke
    • 2
  1. 1.Ontario Institute for Studies in EducationUniversity of TorontoCanada
  2. 2.Fachbereich MathematikUniversität Duisburg-EssenGermany

Personalised recommendations