Indentation Fracture, Acoustic Emission and Modelling of the Mechanical Properties of Thin Ceramic Coatings

  • S. J. Bull
  • I. Arce-Garcia
  • E. G. Berasetegui
  • T. F. Page
Conference paper
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 14)

Abstract

Fracture is an almost inevitable consequence of highly loaded contacts in ceramiccoated systems. For relatively thick coatings fracture is often similar to that observed in bulk samples of the coating but as the coating thickness is reduced the substrate plays an increasing role in influencing or even controlling fracture behaviour. Both through-thickness and interfacial fracture may be observed depending on the relative toughness of the substrate, coating and interface. Through-thickness, fracture is exacerbated by plastic deformation in the substrate and therefore the load support from the substrate is critically important in determining the type and extent of fracture observed. In this paper, nanoindentation testing and post facto atomic force and scanning electron microscopy is used to characterise the types of fracture which occur for hard coatings on softer substrates and multilayer coatings on glass. The effect of fracture on the nanoindentation load-displacement curves and the hardness and Young’s Modulus values obtained from them is discussed and a simple model to account for the observed behaviour is introduced. The use of acoustic emission to monitor plasticity and fracture during the indentation cycle is also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.C. Fisher-Cripps, Vacuum, 58 (2000) 569.CrossRefGoogle Scholar
  2. 2.
    B. Bhushan, in Hand book of Micro-Nanotribology, Ed. B. Bhushan, CRC Press, Boca Raton, 1995, pp321–396.Google Scholar
  3. 3.
    S.V. Hainsworth, H. Chandler and T.F. Page, J. Mater. Res., 11 (1996) 1987.CrossRefADSGoogle Scholar
  4. 4.
    J. den Toonder, J. Malzbender, G. de With and R. Balkenende, J. Mater. Res., 17, (2002) 224.CrossRefADSGoogle Scholar
  5. 5.
    S.V. Hainsworth, M.R. McGurk and T.F. Page, Surf. Coat. Technol., 102 (1998) 97.CrossRefGoogle Scholar
  6. 6.
    MrR. McGurk, PhD Thesis, University of Newcastle, (1997).Google Scholar
  7. 7.
    N. Hellgren M.P., Johansson, E. Broitman, P. Sandstrom, L. Hultman and J.-E. Sundgren, Phys. Rev. B59 (1999) 5162.ADSCrossRefGoogle Scholar
  8. 8.
    W.C. Oliver and G.M. Pharr, J. Mater. Res., 7 (1992) 1564.CrossRefADSGoogle Scholar
  9. 9.
    S.V. Hainsworth, S.J. Bull and T.F. Page, Mat. Res. Soc. Symp. Proc. 522 (1998) 433.Google Scholar
  10. 10.
    A. Daugela, H. Kutomi and T.J. Wyrobek, Z. Metall., 92 (2001) 1052.Google Scholar
  11. 11.
    N.I. Tymiak, A. Daugela, T.J. Wyrobek and O.L. Warren, Mat. Res. Soc. Symp. Proc. Fall Meeting (2002), in press.Google Scholar
  12. 12.
    J. Crepin, T. Bretheau, D. Caldemaison and F. Ferrer, Acta Materalia, 48, (2000) 505.CrossRefGoogle Scholar
  13. 13.
    S.J. Bull and A.M. Korsunsky, Tribology Int., 31 (1999) 547.CrossRefGoogle Scholar
  14. 14.
    S.J. Bull, J. Vac. Sci. Technol., A19, (2001) 1404.ADSGoogle Scholar
  15. 15.
    S.J. Bull, Thin Solid Films, 398–399, (2001) 291.CrossRefGoogle Scholar
  16. 16.
    B.R. Lawn, A.G. Evans and D.B. Marshall, J. Am. Ceram. Soc., 63, 574 (1980).CrossRefGoogle Scholar
  17. 17.
    M.D. Thouless, Eng. Fract. Mech., 61 (1998) 75.CrossRefGoogle Scholar
  18. 18.
    X. Li, D. Diao and B. Bhushan, Acta Mater., 44 (1997) 4453.CrossRefGoogle Scholar
  19. 19.
    X. Li, D. Diao and B. Bhushan, Thin Solid Films, 315 (1998) 214.CrossRefADSGoogle Scholar
  20. 20.
    J. Malzbender, G. de With and J.M.J. den Toonder, J. Mater. Res., 15 (2000) 1209.CrossRefADSGoogle Scholar
  21. 21.
    J. Malzbender and G. de With, Surf. Coat. Technol., 154 (2002) 21.CrossRefGoogle Scholar
  22. 22.
    J.W. Hutchinson and Z. Suo, Adv. Appl. Mech., 29 (1992) 63.MATHCrossRefGoogle Scholar
  23. 23.
    L.G. Rosenfeld, J.E. Ritter, T.J. Lardner and M.R. Lin, J. Appl. Phys. 67 (1990) 3291.CrossRefADSGoogle Scholar
  24. 24.
    B.R. Lawn and E.R. Fuller, J. Mater. Sci., 19 (1984) 4061.CrossRefADSGoogle Scholar
  25. 25.
    G.R. Anstis, P. Chantikul, B.R. Lawn and D.B. Marshall, J. Am. Ceram. Soc. 64 (1981) 533.CrossRefGoogle Scholar
  26. 26.
    D. Rouby, P. Fleischman and C. Duvergier, Phil. Mag. A47 (1983) 671.Google Scholar
  27. 27.
    V.D. Natsik and K.A. Chishko, Sov. Phys. Solid State, 20 (1978) 1117.Google Scholar
  28. 28.
    J. Weiss and J.R. Grasso, J. Phys. Chem., 101 (1997) 6113.Google Scholar
  29. 29.
    B.R. Lawn and R. Wilshaw, J. Mater. Sci. 10 (1975) 1049.CrossRefADSGoogle Scholar
  30. 30.
    M. McGurk and T.F. Page, J. Mater. Res., 14 (1999) 2283.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. J. Bull
    • 1
  • I. Arce-Garcia
    • 1
  • E. G. Berasetegui
    • 1
  • T. F. Page
    • 1
  1. 1.School of Chemical Engineering and Advanced MaterialsUniversity of NewcastleNewcastle upon TyneUK

Personalised recommendations