Flavonoid Pigments as Tools in Molecular Genetics

  • S. Chopra
  • A. Hoshino
  • J. Boddu
  • S. Iida

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, S., Lee, E., Walker, A. R., Tanner, G. J., Larkin, P. J. and Ashton, A. R., 2003, The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX and is essential for proanthocyanidin synthesis and vacuole development, Plant J 35: 624–636.PubMedGoogle Scholar
  2. Alfenito, M. R., Souer, E., Goodman, C. D., Buell, R., Mol, J., Koes, R. and Walbot, V., 1998, Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases, Plant Cell 10: 1135–1149.PubMedGoogle Scholar
  3. Athma, P., Grotewold, E. and Peterson, T., 1992, Insertional mutagenesis of the maize P gene by intragenic transposition of Ac, Genetics 131: 199–209.PubMedGoogle Scholar
  4. Bieza, K. and Lois, R., 2001, An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics, Plant Physiol 126: 1105-1115.PubMedGoogle Scholar
  5. Boddu, J., Svabek, C., Sekhon, R., Gevens, A., Nicholson, R., Jones, D., J., P., Gustine, D. and Chopra, S., 2004, Expression of a putative flavonoid 3'-hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins, Physiol Mol Plant Path 65: 101–113.Google Scholar
  6. Boddu, J., Jiang, C., Sangar, V., Olson, T., Peterson, T. and Chopra, S., 2005a, Comparative structural and functional characterization of sorghum and maize duplications containing orthologous Myb transcription regulators of 3-deoxyflavonoid biosynthesis, Plant Mol Biol, in press.Google Scholar
  7. Boddu, J., Svabek, C., Ibraheem, F., Jones, A. D. and Chopra, S., 2005b, Characterization of a deletion allele of a sorghum Myb gene yellow seed1 showing loss of 3-deoxyflavonoids, Plant Sci, in press.Google Scholar
  8. Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A. and Lamb, C., 2000, Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis, Plant Cell 12: 2383–2394.PubMedGoogle Scholar
  9. Brink, R. A. and Nilan, R. A., 1952, The relation between light variegated and medium variegated pericarp in maize, Genetics 37: 519–544.PubMedGoogle Scholar
  10. Brink, R. A., 1958, Paramutation at the R locus in maize, Cold Spring Harb Symp Quant Biol 23: 379-391.PubMedGoogle Scholar
  11. Brink, R. A. and Styles, E. D., 1966, A collection of pericarp factors, Maize Genet Coop News 40: 149-160.Google Scholar
  12. Brink, R. A., Styles, E. D. and Axtell, J. D., 1968, Paramutation: directed genetic change. Paramutation occurs in somatic cells and heritably alters the functional state of a locus, Science 159: 161–170.PubMedGoogle Scholar
  13. Brugliera, F., Holton, T. A., Stevenson, T. W., Farcy, E., Lu, C. Y. and Cornish, E. C., 1994, Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida, Plant J 5: 81-92.PubMedGoogle Scholar
  14. Brugliera, F., Barri-Rewell, G., Holton, T. A. and Mason, J. G., 1999, Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida, Plant J 19: 441–451.PubMedGoogle Scholar
  15. Brutnell, T. P., 2002, Transposon tagging in maize, Funct Integr Genomics 2: 4–12.PubMedGoogle Scholar
  16. Burr, F. A., Burr, B., Scheffler, B. E., Blewitt, M., Wienand, U. and Matz, E. C., 1996, The maize repressor-like gene intensifier1 shares homology with the r1/b1 multigene family of transcription factors and exhibits missplicing, Plant Cell 8: 1249–1259.PubMedGoogle Scholar
  17. Byrne, P. F., McMullen, M. D., Snook, M. E., Musket, T. A., Theuri, J. M., Widstrom, N. W., Wiseman, B. R. and Coe, E. H., 1996, Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks, Proc Natl Acad Sci USA 93: 8820–8825.PubMedGoogle Scholar
  18. Carey, C. C., Strahle, J. T., Selinger, D. A. and Chandler, V. L., 2004, Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana, Plant Cell 16: 450–464.PubMedGoogle Scholar
  19. Carvalho, C. H. S., Boddu, J., Zehr, U. B., Axtell, J. D., Pedersen, J. F. and Chopra, S., 2005, Genetics and molecular chracterization of Candystripe1 transposition events in sorghum, Genetica, in press.Google Scholar
  20. Chandler, V. L., Radicella, J. P., Robbins, T. P., Chen, J. and Turks, D., 1989, Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences, Plant Cell 1: 1175–1183.PubMedGoogle Scholar
  21. Chandler, V. L. and Stam, M., 2004, Chromatin conversations: mechanisms and implications of paramutation, Nat Rev Genet 5: 532–544.PubMedGoogle Scholar
  22. Chen, J., Greenblatt, I. M. and Dellaporta, S. L., 1987, Transposition of Ac from the P locus of maize into unreplicated chromosomal sites, Genetics 117: 109–116.PubMedGoogle Scholar
  23. Chopra, S., Athma, P. and Peterson, T., 1996, Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements, Plant Cell 8: 1149–1158.PubMedGoogle Scholar
  24. Chopra, S., Athma, P., Li, X. G. and Peterson, T., 1998, A maize Myb homolog is encoded by a multicopy gene complex, Mol Gen Genet 260: 372–380.PubMedGoogle Scholar
  25. Chopra, S., Brendel, V., Zhang, J., Axtell, J. D. and Peterson, T., 1999, Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor, Proc Natl Acad Sci USA 96: 15330–15335.PubMedGoogle Scholar
  26. Chopra, S., Gevens, A., Svabek, C., Wood, K. V., Peterson, T. and Nicholson, R. L., 2002, Excision of the Candystripe1 transposon from a hyper-mutable Y1-cs allele shows that the sorghum y1 gene control the biosynthesis of both 3-deoxyanthocyanidin phytoalexins and phlobaphene pigments, Physiol Mol Plant Path 60: 321–330.Google Scholar
  27. Chopra, S., Cocciolone, S. M., Bushman, S., Sangar, V., McMullen, M. D. and Peterson, T., 2003, The maize Unstable factor for orange1 is a dominant epigenetic modifier of a tissue specifically silent allele of pericarp color1, Genetics 163: 1135–1146.PubMedGoogle Scholar
  28. Chuck, G., Robbins, T., Nijjar, C., Ralston, E., Courtney-Gutterson, N. and Dooner, H. K., 1993, Tagging and cloning of a petunia flower color gene with the maize transposable element Activator, Plant Cell 5: 371–378.PubMedGoogle Scholar
  29. Cocciolone, S. M., Sidorenko, L. V., Chopra, S., Dixon, P. M. and Peterson, T., 2000, Hierarchical patterns of transgene expression indicate involvement of developmental mechanisms in the regulation of the maize P1-rr promoter, Genetics 156: 839–846.PubMedGoogle Scholar
  30. Cocciolone, S. M., Chopra, S., Flint-Garcia, S. A., McMullen, M. D. and Peterson, T., 2001, Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated, Plant J 27: 467–478.PubMedGoogle Scholar
  31. Cocciolone, S. M., Nettleton, D., Snook, M. and Peterson, T., 2005, Transformation of maize with the p1 transcription factor directs production of silk maysin, a corn earworm resistance factor, in concordance with a hierarchy of floral organ pigmentation, Plant Biotech 3: 225–235.Google Scholar
  32. Coe, E. H. and Neuffer, M. G., 1977, The genetics of corn. In G. F. Sprague (Ed.), Corn and Corn Improvement (pp. 111–223). Madison, WI: American Society of Agronomy.Google Scholar
  33. Coe, E. H., Jr., 2001, The origins of maize genetics, Nat Rev Genet 2: 898–905.PubMedGoogle Scholar
  34. Coen, E. S., Robbins, T. P., Almeida, J., Hudson, A. and Carpenter, R., 1989, Consequences and mechanisms of transposition in Antirrhinum majus. In D. E. Berg and M. M. Howe, eds, Mobile DNA (pp. 413–436). Washington: American Society for Microbiology.Google Scholar
  35. Cone, K. C., Burr, F. A. and Burr, B., 1986, Molecular analysis of the maize anthocyanin regulatory locus C1, Proc Natl Acad Sci. USA 83: 9631–9635.PubMedGoogle Scholar
  36. Cone, K. C., Cocciolone, S. M., Burr, F. A. and Burr, B., 1993, Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant, Plant Cell 5: 1795–1805.PubMedGoogle Scholar
  37. Debeaujon, I., Peeters, A. J. M., Leon-Kloosterziel, K. M. and Koornneef, M., 2001, The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium, Plant Cell 13: 853–871.PubMedGoogle Scholar
  38. Debeaujon, I., Nesi, N., Perez, P., Devic, M., Grandjean, O., Caboche, M. and Lepiniec, L., 2003, Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development, Plant Cell 15: 2514–2531.PubMedGoogle Scholar
  39. Dellaporta, S. L., Greenblatt, I., Kermicle, J., Hicks, J. B. and Wessler, S., 1988, Molecular cloning of the maize R-nj allele by transposon tagging with Ac, Stadler Genet. Symp 18: 263–282.Google Scholar
  40. Dellaporta, S. L. and Moreno, M. A., 1994, Gene tagging with Ac/Ds elements in maize. In M. Freeling and V. Walbot, eds, The Maize Handbook (pp. 219–233). New York: Springer-Verlag.Google Scholar
  41. de Vetten, N., Quattrocchio, F., Mol, J. and Koes, R., 1997, The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals, Genes Dev 11: 1422–1434.PubMedGoogle Scholar
  42. de Vetten, N., ter Horst, J., van Schaik, H. P., de Boer, A., Mol, J. and Koes, R., 1999, A cytochrome b 5 is required for full activity of flavonoid 3′, 5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors, Proc Natl Acad Sci USA 96: 778–783.PubMedGoogle Scholar
  43. de Vlaming, P., Schram, A. W. and Wiering, H., 1983, Genes affecting flower colour and pH of flower limb homogenates in Petunia hybrida, Theor Appl Genet 66: 271–278.Google Scholar
  44. de Vries, H., 1903, Die Mutationstheorie 2. Leipzig: von Veit u. Co. Dixon, R. A. and Steele, C. L., 1999, Flavonoids and isoflavonoids—a gold mine for metabolic engineering, Trends Plant Sci 4: 394–400.Google Scholar
  45. Dooner, H. K. and Nelson, O. E., 1977, Genetic control of UDPglucose: flavonol 3-O-glucosyltransferase in the endosperm of maize, Biochem Genet 15: 509–519.PubMedGoogle Scholar
  46. Dooner, H. K., Robbins, T. P. and Jorgensen, R. A., 1991, Genetic and developmental control of anthocyanin biosynthesis, Annu Rev Genet 25: 173–199.PubMedGoogle Scholar
  47. Dorweiler, J. E., Carey, C. C., Kubo, K. M., Hollick, J. B., Kermicle, J. L. and Chandler, V. L., 2000, Mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci, Plant Cell 12: 2101–2118.PubMedGoogle Scholar
  48. Emerson, R. A., 1917, Genetical studies of variegated pericarp in maize, Genetics 2: 1–35.PubMedGoogle Scholar
  49. Fedoroff, N. V., Furtek, D. and Nelson, O. E., 1984, Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac), Proc Natl Acad Sci USA 81: 3825–3829.PubMedGoogle Scholar
  50. Fedoroff, N. V., 1989, Maize transposable elements. In D. E. Berg and M. M. Howe, eds, Mobile DNA (pp. 375–411). Washington: American Society for Microbiology.Google Scholar
  51. Feschotte, C., Jiang, N. and Wessler, S. R., 2002, Plant transposable elements: where genetics meets genomics, Nat Rev Genet 3: 329–341.PubMedGoogle Scholar
  52. Foo, L. Y. and Karchesy, J. J., 1989, Chemical nature of phlopaphene. In R. W. Hemingwa and J. J. Karchesy, eds, Chemistry and Significance of Condensed Tannins (pp. 109–118). New York and London: Plenum Press.Google Scholar
  53. Franken, P., Niesbach-Klosgen, U., Weydemann, U., Marechal-Drouard, L., Saedler, H. and Wienand, U., 1991, The duplicated chalcone synthase genes C2 and Whp (white pollen) of Zea mays are independently regulated; evidence for translational control of Whp expression by the anthocyanin intensifying gene in, EMBO J 10: 2605–2612.PubMedGoogle Scholar
  54. Fukada-Tanaka, S., Inagaki, Y., Yamaguchi, T., Saito, N. and Iida, S., 2000, Colour-enhancing protein in blue petals, Nature 407: 581.PubMedGoogle Scholar
  55. Gerats, T. and Vandenbussche, M., 2005, A model system for comparative research: Petunia, Trends Plant Sci 10: 251–256.PubMedGoogle Scholar
  56. Goff, S. A., Cone, K. C. and Chandler, V. L., 1992, Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins, Genes Dev 6: 864–875.PubMedGoogle Scholar
  57. Goodman, C. D., Casati, P. and Walbot, V., 2004, A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays, Plant Cell 16: 1812–1826.PubMedGoogle Scholar
  58. Goodrich, J., Carpenter, R. and Coen, E. S., 1992, A common gene regulates pigmentation pattern in diverse plant species, Cell 68: 955–964.PubMedGoogle Scholar
  59. — Flower color variation, Angrew Chem Int Ed Engl 30: 17–33.Google Scholar
  60. Greenblatt, I. M. and Brink, R. A., 1963, Transpositions of Modulator in maize into divided and undivided chromosome segments, Nature 197: 412–413.Google Scholar
  61. Greenblatt, I. M., 1984, A chromosome replication pattrern deduced from pericarp phenotypes resulting from movements of the transposable element Modulator, in maize, Genetics 108: 471–485.PubMedGoogle Scholar
  62. Grotewold, E., Athma, P. and Peterson, T., 1991, Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors, Proc Natl Acad Sci USA 88: 4587–4591.PubMedGoogle Scholar
  63. Grotewold, E., Drummond, B. J., Bowen, B. and Peterson, T., 1994, The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset, Cell 76: 543–553.PubMedGoogle Scholar
  64. Grotewold, E., Chamberlin, M., Snook, M., Siame, B., Butler, L., Swenson, J., Maddock, S., Clair, G. S. and Bowen, B., 1998, Engineering secondary metabolism in maize cells by ectopic expression of transcription factors, Plant Cell 10: 721–740.PubMedGoogle Scholar
  65. Habu, Y., Hisatomi, Y. and Iida, S., 1998, Molecular characterization of the mutable flaked allele for flower variegation in the common morning glory, Plant J 16: 371–376.PubMedGoogle Scholar
  66. Harborne, J. B. and Williams, C. A., 2000, Advances in flavonoid research since 1992, Phytochem 55: 481–504.Google Scholar
  67. Hollick, J. B., Patterson, G. I., Asmundsson, I. M. and Chandler, V. L., 2000, Paramutation alters regulatory control of the maize pl locus, Genetics 154: 1827–1838.PubMedGoogle Scholar
  68. Holton, T. A., Brugliera, F., Lester, D. R., Tanaka, Y., Hyland, C. D., Menting, J. G., Lu, C. Y., Farcy, E., Stevenson, T. W. and Cornish, E. C., 1993, Cloning and expression of cytochrome P450 genes controlling flower colour, Nature 366: 276–279.PubMedGoogle Scholar
  69. Holton, T. A., and Cornish, E. C., 1995, Genetics and biochemistry of anthocyanin biosynthesis, Plant Cell 7: 1071–1083.PubMedGoogle Scholar
  70. Honda, T. and Saito, N., 2002, Recent progress in the chemistry of polyacylated anthocyanins as flower color pigments, Heterocycles 56: 633–692.Google Scholar
  71. Hoshino, A., Abe, Y., Saito, N., Inagaki, Y. and Iida, S., 1997, The gene encoding flavanone 3-hydroxylase is expressed normally in the pale yellow flowers of the Japanese morning glory carrying the speckled mutation which produce neither flavonol nor anthocyanin but accumulate chalcone, aurone and flavanone, Plant Cell Physiol 38: 970–974.PubMedGoogle Scholar
  72. Hoshino, A., Johzuka-Hisatomi, Y. and Iida, S., 2001, Gene duplication and mobile genetic elements in the morning glories, Gene 265: 1–10.PubMedGoogle Scholar
  73. Hoshino, A., Morita, Y., Choi, J. D., Saito, N., Toki, K., Tanaka, Y. and Iida, S., 2003, Spontaneous mutations of the flavonoid 3'-hydroxylase gene conferring reddish flowers in the three morning glory species, Plant Cell Physiol 44: 990–1001.PubMedGoogle Scholar
  74. Huits, H. S. M., Gerats, A. G. M., Kreike, M. M., Mol, J. N. M. and Koes, R. E., 1994, Genetic control of dihydroflavonol 4-reductase gene expression in Petunia hybrida, Plant J 6: 295–310.PubMedGoogle Scholar
  75. Iida, S., Hoshino, A., Johzuka-Hisatomi, Y., Habu, Y. and Inagaki, Y., 1999, Floricultural traits and transposable elements in the Japanese and common morning glories, Annal New York Acad Sci 870: 265–274.Google Scholar
  76. Iida, S., Morita, Y., Choi, J. D., Park, K. I. and Hoshino, A., 2004, Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories, Adv Biophys. 38: 141–159.Google Scholar
  77. Inagaki, Y., Hisatomi, Y., Suzuki, T., Kasahara, K. and Iida, S., 1994, Isolation of a Suppressor-mutator/Enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers, Plant Cell 6: 375–383.PubMedGoogle Scholar
  78. Kambal, A. E. and Bate-Smith, E. C., 1976, A genetic and biochemical study on pericarp pigmentation between two cultivars of grain sorghum, Sorghum bicolor, Heredity 37: 417–421.Google Scholar
  79. Kawasaki, S. and Nitasaka, E., 2004, Characterization of Tpn1 family in the Japanese morning glory: En/Spm-related transposable elements capturing host genes, Plant Cell Physiol 45: 933–944.PubMedGoogle Scholar
  80. Kirby, L. T. and Styles, E. D., 1970, Flavonoids associated with specific gene action in maize aleurone, and the role of light in substituting for the action of a gene. [Corn], Can J Genet Cytol 12: 934–940.Google Scholar
  81. Kitamura, S., Shikazono, N. and Tanaka, A., 2004, TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis, Plant J 37: 104–114.PubMedGoogle Scholar
  82. Koes, R. E., Spelt, C. E. and Mol, J. N. M., 1989, The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction, Plant Mol Biol 12: 213–225.Google Scholar
  83. Koes, R. E., Souer, E., van Houwelingen, A., Mur, L., Spelt, C., Quattrocchio, F., Wing, J., Oppedijk, B., Ahmed, S., Maes, T., Gerats, T., Hoogeneen, P., Meesters, M., Kools, D. and Mol, J. N. M., 1995, Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants, Proc Natl Acad Sci USA. 92: 8149–8153.PubMedGoogle Scholar
  84. Koes, R. E., Verweij, W. and Quattrocchio, F., 2005, Flavonoids: a colorful model for the regulation and evolution of biochemical pathways, Trends Plant Sci, 10: 236–242.PubMedGoogle Scholar
  85. Kolkman, J. M., Conrad, L. J., Farmer, P. R., Hardeman, K., Ahern, K. R., Lewis, P. E., Sawers, R. J. H., Lebejko, S., Chomet, P. and Brutnell, T. P., 2005, Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis, Genetics 169: 981–995.PubMedGoogle Scholar
  86. Kreuzaler, F., Ragg, H., Fautz, E., Kuhn, D. N. and Hahlbrock, K., 1983, UV-Induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense, Proc Natl Acad Sci USA 80: 2591–2593.PubMedGoogle Scholar
  87. Kroon, J., Souer, E., de Graaff, A., Xue, Y., Mol, J. and Koes, R., 1994, Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: characterization of insertion sequences in two mutant alleles, Plant J 5: 69–80.PubMedGoogle Scholar
  88. Kunze, R. and Weil, C. F., 2002, The hAT and CACTA superfamilies of plant transposons. In N. L. Craig, R. Craigie, M. Gellert and A. M. Lambowitz, eds, Mobile DNA II (pp. 565–610). Washington, D. C.: ASM Press.Google Scholar
  89. Larson, R., Bussard, J. B. and Coe, E. H., Jr., 1986, Gene-dependent flavonoid 3'-hydroxylation in maize, Biochem Genet 24: 615–624.PubMedGoogle Scholar
  90. Lechelt, C., Peterson, T., Laird, A., Chen, J., Dellaporta, S. L., Dennis, E., Peacock, W. J. and Starlinger, P., 1989, Isolation and molecular analysis of the maize P locus, Mol Gen Genet 219: 225–234.PubMedGoogle Scholar
  91. Lippman, Z., Gendrel, A. V., Black, M., Vaughn, M. W., Dedhia, N., McCombie, W. R., Lavine, K., Mittal, V., May, B., Kasschau, K. D., Carrington, J. C., Doerge, R. W., Colot, V. and Martienssen, R., 2004, Role of transposable elements in heterochromatin and epigenetic control, Nature 430: 471–476.PubMedGoogle Scholar
  92. Lippman, Z. and Martienssen, R., 2004, The role of RNA interference in heterochromatic silencing, Nature 431: 364–370.PubMedGoogle Scholar
  93. Lo, S. C. and Nicholson, R. L., 1998, Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls. Implications for a compensatory role in the defense response, Plant Physiol 116: 979–989.PubMedGoogle Scholar
  94. Ludwig, S. R. and Wessler, S. R., 1990, Maize R gene family: Tissue-specific helix-loop-helix proteins, Cell 62: 849–851.PubMedGoogle Scholar
  95. Martin, C., Carpenter, R., Sommer, H., Saedler, H. and Coen, E. S., 1985, Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging, EMBO J 4: 1625–1630.PubMedGoogle Scholar
  96. Martin, C., Prescott, A., Mackay, S., Bartlett, J. and Vrijlandt, E., 1991, Control of anthocyanin biosynthesis in flowers of Antirrhinum majus, Plant J 1: 37–49.PubMedGoogle Scholar
  97. Martin, C. and Gerats, T., 1993a, Control of pigment biosynthesis genes during petal development, Plant Cell 5: 1253–1264.Google Scholar
  98. Martin, C. and Gerats, T., 1993b, The control of flower coloration. In B. R. Jordan, ed, The Molecular Biology of Flowering (pp. 219–255). Wallingford, Oxon: C.A.B. International.Google Scholar
  99. Matzke, M. A. and Birchler, J. A., 2005, RNAi-mediated pathways in the nucleus, Nat. Rev. Genet. 6: 24–35.PubMedGoogle Scholar
  100. McClintock, B., 1950, The origin and behavior of mutable loci in maize, Proc Natl Acad Sci USA 36: 344–355.PubMedGoogle Scholar
  101. McClintock, B., 1951, Chromosome organization and genic expression, Cold Spring Harb Symp Quant Biol 16: 13–47.PubMedGoogle Scholar
  102. McClintock, B., 1956, Controlling elements and the gene, Cold Spring Harbor Symp Quant Biol 21: 197–216.PubMedGoogle Scholar
  103. McLaughlin, M. and Walbot, V., 1987, Cloning of a mutable bz2 allele of maize by transposon tagging and differential hybridization, Genetics 117: 771–776.PubMedGoogle Scholar
  104. Menssen, A., Hohmann, S., Martin, W., Schnable, P. S., Peterson, P. A., Saedler, H. and Gierl, A., 1990, The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene, EMBO J 9: 3051–3057.PubMedGoogle Scholar
  105. Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H., 1987, A new petunia flower colour generated by transformation of a mutant with a maize gene, Nature 330: 677–678.PubMedGoogle Scholar
  106. Meyer, P., 1995, DNA methylation and transgene silencing in Petunia hybrida, Curr Top Microbiol Immunol 197: 15–28.PubMedGoogle Scholar
  107. Mo, Y., Nagel, C. and Taylor, L. P., 1992, Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen, Proc Natl Acad Sci USA 89: 7213–7217.PubMedGoogle Scholar
  108. Mol, J., Grotewold, E. and Koes, R., 1998, How genes paint flowers and seeds, Trends Plant Sci 3: 212–217.Google Scholar
  109. Moreno, M. A., Chen, J., Greenblatt, I. and Dellaporta, S. L., 1992, Reconstitutional mutagenesis of the maize P gene by short-range Ac transpositions, Genetics 131: 939–956.PubMedGoogle Scholar
  110. Morita, Y., Hoshino, A., Kikuchi, Y., Okuhara, H., Ono, E., Tanaka, Y., Fukui, Y., Saito, N., Nitasaka, E., Noguchi, H. and Iida, S., 2005, Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose: anthocyanidin 3-O-glucoside-2''-O-glucosyltransferase, due to 4-bp insertions in the gene, Plant J 42: 353–363.PubMedGoogle Scholar
  111. Napoli, C., Lemieux, C. and Jorgensen, R., 1990, Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans, Plant Cell 2: 279–289.PubMedGoogle Scholar
  112. Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M. and Lepiniec, L., 2000, The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques, Plant Cell 12: 1863–1878.PubMedGoogle Scholar
  113. Nesi, N., Jond, C., Debeaujon, I., Caboche, M. and Lepiniec, L., 2001, The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed, Plant Cell 13: 2099–2114.PubMedGoogle Scholar
  114. Neuffer, M. G., Coe, E. H. and Wessler, S. R., 1997, Mutants of Maize. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  115. Nevers, P., Shepherd, N. S. and Saedler, H., 1986, Plant transposable elements, Adv Bot Res 12: 103–203.Google Scholar
  116. Nicholson, R. L. and Hammerschmidt, R., 1992, Phenolic compounds and their role in disease resistance, Ann Rev Phytopathol 30: 369–389.Google Scholar
  117. O'Reilly, C., Shepherd, N. S., Pereira, A., Schwarz-Sommer, Z., Bertam, I., Robertson, D. S., Peterson, P. A. and Saedler, H., 1985, Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1, EMBO J 4: 877–882.PubMedGoogle Scholar
  118. Ohnishi, M., Fukada-Tanaka, S., Hoshino, A., Takada, J., Inagaki, Y. and Iida, S., 2005, Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory, Plant Cell Physiol 46: 259–267.PubMedGoogle Scholar
  119. Park, K. I., Choi, J. D., Hoshino, A., Morita, Y. and Iida, S., 2004, An intragenic tandem duplication in a transcriptional regulatory gene for anthocyanin biosynthesis confers pale-colored flowers and seeds with fine spots in Ipomoea tricolor, Plant J 38: 840–849.PubMedGoogle Scholar
  120. Payne, C. T., Zhang, F. and Lloyd, A. M., 2000, GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1, Genetics 156: 1349–1362.PubMedGoogle Scholar
  121. Paz-Ares, J., Wienand, U., Peterson, P. A. and Saedler, H., 1986, Molecular cloning of the c locus of Zea mays: a locus regulating the anthocyanin pathway, EMBO J 5: 829–833.PubMedGoogle Scholar
  122. Peterson, T., 1990, Intragenic transposition of Ac generates a new allele of the maize P gene, Genetics 126: 469–476.PubMedGoogle Scholar
  123. Pooma, W., Gersos, C. and Grotewold, E., 2002, Transposon insertions in the promoter of the Zea mays a1 gene differentially affect transcription by the Myb factors P and C1, Genetics 161: 793–801.PubMedGoogle Scholar
  124. Quattrocchio, F., Wing, J. F., van der Woude, K., Mol, J. N. M. and Koes, R., 1998, Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes, Plant J 13: 475–488.PubMedGoogle Scholar
  125. Quattrocchio, F., Wing, J., van der Woude, K., Souer, E., de Vetten, N., Mol, J. and Koes, R., 1999, Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color, Plant Cell 11: 1433–1444.PubMedGoogle Scholar
  126. Radicella, J. P., Turks, D. and Chandler, V. L., 1991, Cloning and nucleotide sequence of a cDNA encoding B-Peru, a regulatory protein of the anthocyanin pathway in maize, Plant Mol Biol 17: 127-130.PubMedGoogle Scholar
  127. Ramsay, N. A. and Glover, B. J., 2005, MYB-bHLH-WD40 protein complex and the evolution of cellular diversity, Trends Plant Sci 10: 63–70.PubMedGoogle Scholar
  128. Russo, V. E. A., Martienssen, R. A. and Riggs, A. D., 1996, Epigenetic Mechanisms of Gene Regulation. Plainview, N.Y.: Cold Spring Harbor Laboratory Press.Google Scholar
  129. Schijlen, E. G., Ric de Vos, C. H., van Tunen, A. J. and Bovy, A. G., 2004, Modification of flavonoid biosynthesis in crop plants, Phytochem 65: 2631–2648.Google Scholar
  130. Schoenbohm, C., Martens, S., Eder, C., Forkmann, G. and Weisshaar, B., 2000, Identification of the Arabidopsis thaliana flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme, Biol Chem 381: 749–753.PubMedGoogle Scholar
  131. Schwarz-Sommer, Z., Davies, B. and Hudson, A., 2003, An everlasting pioneer: the story of Antirrhinum research, Nat Rev Genet 4: 655–664.Google Scholar
  132. Schwinn, K. E. and Davies, K. M., 2004, Flavonoids. In K. Davies, ed, Plant Pigments and Their Manipulation (pp. 92–149). Oxford: Blackwell Publishing Ltd.Google Scholar
  133. Shikazono, N., Yokota, Y., Kitamura, S., Suzuki, C., Watanabe, H., Tano, S. and Tanaka, A., 2003, Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions, Genetics 163: 1449–1455.PubMedGoogle Scholar
  134. Shirley, B. W., Hanley, S. and Goodman, H. M., 1992, Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations, Plant Cell 4: 333–347.PubMedGoogle Scholar
  135. Shirley, B. W., Kubasek, W. L., Storz, G., Bruggemann, E., Koornneef, M., Ausubel, F. M. and Goodman, H. M., 1995, Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis, Plant J 8: 659–671.PubMedGoogle Scholar
  136. Sidorenko, L. V., Li, X., Cocciolone, S. M., Chopra, S., Tagliani, L., Bowen, B., Daniels, M. and Peterson, T., 2000, Complex structure of a maize Myb gene promoter: functional analysis in transgenic plants, Plant J 22: 471–482.PubMedGoogle Scholar
  137. Snyder, B. A. and Nicholson, R. L., 1990, Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress, Science 248: 1637–1639.PubMedGoogle Scholar
  138. Souer, E., Quattrocchio, F., de Vetten, N., Mol, J. and Koes, R., 1995, A general method to isolate genes tagged by a high copy number transposable element, Plant J 7: 677–685.PubMedGoogle Scholar
  139. Spelt, C., Quattrocchio, F., Mol, J. N. and Koes, R., 2000, anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes, Plant Cell 12: 1619–1631.PubMedGoogle Scholar
  140. Spelt, C., Quattrocchio, F., Mol, J. and Koes, R., 2002, ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms, Plant Cell 14: 2121–2135.PubMedGoogle Scholar
  141. Springob, K., Nakajima, J., Yamazaki, M. and Saito, K., 2003, Recent advances in the biosynthesis and accumulation of anthocyanins, Nat Prod Rep 20: 288–303.PubMedGoogle Scholar
  142. Styles, E. D. and Ceska, O., 1977, The genetic control of flavonoid synthesis in maize, Can J Genet Cytol 19: 289–302.Google Scholar
  143. Styles, E. D. and Ceska, O., 1981, P and R control of flavonoids in BRONZE coleoptiles of maize, Can J Genet Cytol 23: 691–704.Google Scholar
  144. Styles, E. D. and Ceska, O., 1989, Pericarp flavonoids in genetic strains of Zea mays, Maydica 34: 227-237.Google Scholar
  145. Takahashi, S., Inagaki, Y., Satoh, H., Hoshino, A. and Iida, S., 1999, Capture of a genomic HMG domain sequence by the En/Spm-related transposable element Tpn1 in the Japanese morning glory, Mol Gen Genet 261: 447–451.PubMedGoogle Scholar
  146. Tanaka, Y., Katsumoto, Y., Brugliera, F. and Mason, J., 2005, Genetic engineering in floriculture, Plant Cell Tiss Org Cult 80: 1–24.Google Scholar
  147. Tanner, G. J., Francki, K. T., Abrahams, S., Watson, J. M., Larkin, P. J. and Ashton, A. R., 2003, Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA, J Biol Chem 278: 31647–31656.PubMedGoogle Scholar
  148. Tanner, G. J., 2004, Condensed tannins. In K. Davies, ed, Plant Pigments and Their Manipulation (pp. 150–184). Oxford: Blackwell Publishing Ltd.Google Scholar
  149. Tiffin, P., Miller, R. E. and Rausher, M. D., 1998, Control of expression patterns of anthocyanin structural genes by two loci in the common morning glory, Genes Genet Syst 73: 105–110.Google Scholar
  150. Tohge, T., Nishiyama, Y., Hirai, M. Y., Yano, M., Nakajima, J., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D. B., Kitayama, M., Noji, M., Yamazaki, M. and Saito, K., 2005, Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants overexpressing a MYB transcription factor, Plant J 42: 218–235.PubMedGoogle Scholar
  151. van der Krol, A. R., Lenting, P. E., Veenstra, J., van der Meer, I. M., Koes, R. E., Gerats, A. G. M., Mol, J. N. M. and Stuitje, A. R., 1988, An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation, Nature 333: 866–869.Google Scholar
  152. van der Krol, A. R., Mur, L. A., de Lange, P., Mol, J. N. M. and Stuitje, A. R., 1990, Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect, Plant Mol Biol 14: 457–466.PubMedGoogle Scholar
  153. van Houwelingen, A., Souer, E., Spelt, K., Kloos, D., Mol, J. and Koes, R., 1998, Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida, Plant J 13: 39–50.PubMedGoogle Scholar
  154. van Tunen, A. J., Mur, L. A., Recourt, K., Gerats, A. G. M. and Mol, J. N., 1991, Regulation and manipulation of flavonoid gene expression in anthers of petunia: the molecular basis of the Po mutation, Plant Cell 3: 39–48.PubMedGoogle Scholar
  155. Walker, A. R., Davison, P. A., Bolognesi-Winfield, A. C., James, C. M., Srinivasan, N., Blundell, T. L., Esch, J. J., Marks, M. D. and Gray, J. C., 1999, The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein, Plant Cell 11: 1337–1350.PubMedGoogle Scholar
  156. Wienand, U., Sommer, H., Schwarz, Z., Shepherd, N., Saedler, H., Kreuzaler, F., Ragg, H., Fautz, E., Hahlbrock, K., Harrison, B. J. and Peterson, P., 1982, A general method to identify plant structural genes among genomic DNA clones using transposable element induced mutations, Mol Gen Genet 187: 195–201.Google Scholar
  157. Wienand, U., Weydemann, U., Niesbach-Klosgen, U., Peterson, P. A. and Saedler, H., 1986, Molecular cloning of the c2 locus of Zea mays, the gene coding for chalcone synthase, Mol Gen Genet 203: 202–207.Google Scholar
  158. Winkel-Shirley, B., 2001a, Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology, Plant Physiol 126: 485–493.Google Scholar
  159. Winkel-Shirley, B., 2001b, It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism, Plant Physiol 127: 1399–1404.Google Scholar
  160. Wiseman, B. R., Snook, M. and Widstrom, N. W., 1996, Feeding responses of the corn ear worm larvae (Lepidoptera: Noctuidae) on corn silks of varying flavone content, J Econ Entomol 89: 1040–1044.Google Scholar
  161. Wisman, E., Hartmann, U., Sagasser, M., Baumann, E., Palme, K., Hahlbrock, K., Saedler, H. and Weisshaar, B., 1998, Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes, Proc Natl Acad Sci USA 95: 12432–12437.PubMedGoogle Scholar
  162. Xie, D. Y., Sharma, S. B., Paiva, N. L., Ferreira, D. and Dixon, R. A., 2003, Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis, Science 299: 396–399.PubMedGoogle Scholar
  163. Yamaguchi, T., Fukada-Tanaka, S., Inagaki, Y., Saito, N., Yonekura-Sakakibara, K., Tanaka, Y., Kusumi, T. and Iida, S., 2001, Genes encoding the vacuolar Na+/H+ exchanger and flower coloration, Plant Cell Physiol 42: 451–461.PubMedGoogle Scholar
  164. Yoshida, K., Kondo, T., Okazaki, Y. and Katou, K., 1995, Cause of blue petal colour, Nature 373: 291.Google Scholar
  165. Zanta, C. A., Yang, X., Axtell, J. D. and Bennetzen, J. L., 1994, The candystripe locus, y-cs, determines mutable pigmentation of the sorghum leaf, flower, and pericarp, J Hered 85: 23–29.Google Scholar
  166. Zhang, F. and Peterson, T., 2005, Comparisons of maize pericarp color1 alleles reveal paralogous gene recombination and an organ-specific enhancer region, Plant Cell 17: 903–914.PubMedGoogle Scholar
  167. Zhang, P., Chopra, S. and Peterson, T., 2000, A segmental gene duplication generated differentially expressed myb-homologous genes in maize, Plant Cell 12: 2311–2322.PubMedGoogle Scholar
  168. Zhang, F., Gonzalez, A., Zhao, M., Payne, C. T. and Lloyd, A., 2003a, A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis, Development 130: 4859–4869.Google Scholar
  169. Zhang, P., Wang, Y., Zhang, J., Maddock, S., Snook, M. and Peterson, T., 2003b, A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis, Plant Mol Biol 52: 1–15.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • S. Chopra
    • 1
  • A. Hoshino
    • 2
  • J. Boddu
    • 1
  • S. Iida
    • 2
  1. 1.Department of Crop & Soil SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.National Institute for Basic BiologyNational Institutes of Natural SciencesMyodaijiJapan

Personalised recommendations