Advertisement

Kelvin Probe Force Microscopy of Semiconductors

  • Y. Rosenwaks
  • S. Saraf
  • O. Tal
  • A. Schwarzman
  • Th. Glatzel
  • M. Ch. Lux-Steiner

Abstract

Due to their technological importance, III–V compound semiconductors have been widely studied. While extensive work has been done on their geometric and electronic structure, Kelvin probe force microscopy (KPFM) in ultrahigh vacuum (UHV) creates the possibility to study the electronic structure of the surfaces on a nanometer scale [1]. The work function is one of the most important values characterizing the property of a surface. Chemical and physical phenomena taking place at the surface are strongly affected by the work function. In turn, the work function variation reflects physical and chemical changes of surface conditions [2]. For example, due to a localized dipole at atomic steps, the averaged work function on a metal surface decreases in proportion to the step density [3]. If molecules or atoms are adsorbed on a surface, the work function changes depending on the magnitude of the electric dipole formed by the adsorbates [2]. Although the work function is defined as a macroscopic concept, it is necessary to consider its microscopic local variations in understanding the details of the formation of semiconductor interfaces and device behavior.

Keywords

Work Function Grain Boundary Step Edge Contact Potential Contact Potential Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. R. Weaver and D. W. Abraham J. Vac. Sci. Technol. B 9(3), 1559 (1991).CrossRefGoogle Scholar
  2. 2.
    H. Lüth, Surfaces and Interfaces of Solid Materials, 3rd edn. (Springer, 1995).Google Scholar
  3. 3.
    K. Besocke, B. Krahl-Urban, and H. Wagner, Surface Science 68, 39 (1977).CrossRefGoogle Scholar
  4. 4.
    C. C. Williams, Annual Review of Materials Science 29, 471 (1999).CrossRefGoogle Scholar
  5. 5.
    P. De Wolf, M. Geva, T. Hantschel, W. Vandervorst, and R. B. Bylsma, Appl. Phys. Lett. 73, 2155 (1998).CrossRefGoogle Scholar
  6. 6.
    K. Maknys, O. Douheret, and S. Anand, Appl. Phys. Lett. 83, 4205 (2001).CrossRefGoogle Scholar
  7. 7.
    K. Maknys, O. Douheret, and S. Anand, Appl. Phys. Lett. 83, 2184 (2001).CrossRefGoogle Scholar
  8. 8.
    O. Douheret, S. Anand, Th. Glatzel, K. Maknys, and S. Sadewasser, Appl. Phys. Lett. 85, 5245 (2004).CrossRefGoogle Scholar
  9. 9.
    Ph. Ebert, Xun Chen, M. Heinrich, M. Simon, K. Urban, and M. G. Lagally, Phys. Rev. Lett. 76, 2089 (1996).CrossRefGoogle Scholar
  10. 10.
    Ph. Ebert, M. Heinrich, M. Simon, C. Domke, K. Urban, C. K. Shih, M. B. Webb, and M. G. Lagally, Phys. Rev. B 53, 4580 (1996).CrossRefGoogle Scholar
  11. 11.
    Ph. Ebert, P. Quadbeck, K. Urban, B. Henninger, K. Horn, G. Schwarz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett. 79, 2877 (2001).CrossRefGoogle Scholar
  12. 12.
    M. Heinrich, C. Domke, Ph. Ebert, and K. Urban, Phys. Rev. B 53, 10894 (1996).CrossRefGoogle Scholar
  13. 13.
    Ch. Sommerhalter, Th. W. Matthes, Th. Glatzel, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Appl. Phys. Lett. 75, 286 (1999).CrossRefGoogle Scholar
  14. 14.
    Th. Glatzel, S. Sadewasser, R. Shikler, Y. Rosenwaks, and M.Ch. Lux-Steiner, Mat. Sci. Engineer. B 102, 138 (2003).CrossRefGoogle Scholar
  15. 15.
    Y. Rosenwaks, R. Shikler, Th. Glatzel, and S. Sadewasser, Phys. Rev. B 70, 085320 (2004).CrossRefGoogle Scholar
  16. 16.
    A. Huijser, J. van Laar, and T. L. van Rooy, Surface Science 62, 472 (1977).CrossRefGoogle Scholar
  17. 17.
    J. van Laar, A. Huijser, and T. L. van Rooy, Journal of Vacuum Science and Technology 14, 894 (1977).CrossRefGoogle Scholar
  18. 18.
    H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer, J. Appl. Phys. 84, 1168 (1998).CrossRefGoogle Scholar
  19. 19.
    S. Belaidi, P. Girard, and G. Leveque, J. Appl. Phys. 81, 1023 (1997).CrossRefGoogle Scholar
  20. 20.
    A. Schwarzman, E. Grunbaum, E. Strassburg, E. Lepkifker, A. Boag, Th. Glatzel, Z. Barkay, M. Mazzer, K. Barnham, and Y. Rosenwaks, J. Appl. Phys. 98, 84310 (2005).CrossRefGoogle Scholar
  21. 21.
    N. J. Ekins-Daukes, J. M. Barnes, K. W. J. Barnham, J. P. Connolly, M. Mazzer, J. C. Clark, R. Grey, G. Hill, M. A. Pate, and J. S. Roberts, Solar Energy Materials and Solar Cells 68, 71 (2001).CrossRefGoogle Scholar
  22. 22.
    K. W. J. Barnham, P. Abbott, I. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. Tibbits, R. Airey, G. Hill, and J. S. Roberts, Proc. 3rd World Conference on Photovoltaic Energy Conversion (Osaka, Japan, 2003).Google Scholar
  23. 23.
    K. W. J. Barnham, I. Ballard, J. G. Connolly, N. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, and M. Mazzer, J. Mat. Sci.: Mat. Elec. 11, 531 (2000).CrossRefGoogle Scholar
  24. 24.
    K. W. J. Barnham, I. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, and C. Rohr, Physica E 14, 27 (2002).CrossRefGoogle Scholar
  25. 25.
    Z. Barkay, E. Grünbaum, Y. Shapira, Inst. Phys. Conf. Ser. 179, 143 (2003).Google Scholar
  26. 26.
    R. Klenk, Thin Solid Films 387, 135 (2001).CrossRefGoogle Scholar
  27. 27.
    C.-S. Jiang, F. S. Hasoon, H. R. Moutinho, H. A. Al-Thani, M. J. Romero, and M. M. Al-Jassim, Appl. Phys. Lett. 82, 127 (2003).CrossRefGoogle Scholar
  28. 28.
    C.-S. Jiang, R. Noufi, J. A. AbuShama, K. Ramanathan, H. R. Moutinho, J. Pankow, and M. M. Al-Jassim, Appl. Phys. Lett. 84, 3477 (2004).CrossRefGoogle Scholar
  29. 29.
    C.-S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, Appl. Phys. Lett. 85, 2625 (2004).CrossRefGoogle Scholar
  30. 30.
    Th. Glatzel, S. von Roon, S. Sadewasser, R. Klenk, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Proc. 17th EPVSEC, Munich, Germany, p. 1151 (2001).Google Scholar
  31. 31.
    Th. Glatzel, and D. Fuertes Marron, Th. Schedel-Niedrig, S. Sadewasser, and M. Ch. Lux-Steiner, Appl. Phys. Lett. 81, 2017 (2002).CrossRefGoogle Scholar
  32. 32.
    Th. Glatzel, H. Steigert, R. Klenk, M. Ch. Lux-Steiner, T. P. Niesen, and S. Visbeck, Technical Digest of the 14th Photovoltaic Solar Energy Conference PVSEC, vol. 2, p. 707 (Bangkok, Thailand, 2004).Google Scholar
  33. 33.
    D. Fuertes Marrón, Th. Glatzel, A. Meeder, Th. Schedel-Niedrig, S. Sadewasser, and M. Ch. Lux-Steiner, Appl. Phys. Lett. 85(17), 3755–3757 (2004).CrossRefGoogle Scholar
  34. 34.
    D. Fuertes Marrón, S. Sadewasser, A. Meeder, Th. Glatzel, and M. Ch. Lux-Steiner, Phys. Rev. B, 17(2) 033306 (2005).CrossRefGoogle Scholar
  35. 35.
    S. Sadewasser, Th. Glatzel, M. Rusu, A. Meeder, D. Fuertes Marrón, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Mat. Res. Soc. Symp. Proc. Vol. 668, p. H5.4.1 (2001).Google Scholar
  36. 36.
    S. Sadewasser, Th. Glatzel, M. Rusu, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Proc. of the 17th Photovoltaic Solar Energy Conf., Munich, Germany, p. 1155 (2001).Google Scholar
  37. 37.
    S. Sadewasser, Th. Glatzel, M. Rusu, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Appl. Phys. Lett. 80, 2979 (2002).CrossRefGoogle Scholar
  38. 38.
    S. Sadewasser, Th. Glatzel, S. Schuler, S. Nishiwaki, R. Kaigawa, and M. Ch. Lux-Steiner, Thin Solid Films 431–432, 257 (2003).CrossRefGoogle Scholar
  39. 39.
    Ch. Sommerhalter, S. Sadewasser, Th. Glatzel, Th. W. Matthes, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Surf. Sci. 482–485, 1362 (2001).CrossRefGoogle Scholar
  40. 40.
    G. Hanna, Th. Glatzel, S. Sadewasser, N. Ott, H. P. Strunk, U. Rau, and J. H. Werner, accepted Appl. Phys. A.Google Scholar
  41. 41.
    L. Kronik, L. Burstein, M. Leibovitch, Y. Shapira, D. Gal, E. Moons, J. Beier, G. modes, D. Cahen, D. Hariskos, R. Klenk, and H.-W. Schock, Appl. Phys. Lett. 67, 1405 (1995).CrossRefGoogle Scholar
  42. 42.
    M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, Progr. Photovolt. 7, 311 (1999).CrossRefGoogle Scholar
  43. 43.
    A. Klein, T. Loher, C. Pettenkofer, and W. Jägermann J. Appl. Phys. 80, 5039 (1996).CrossRefGoogle Scholar
  44. 44.
    Th. Glatzel, H. Steigert, S. Sadewasser, R. Klenk, and M. Ch. Lux-Steiner, Thin Solid Films 480–481, 177–182 (2005).CrossRefGoogle Scholar
  45. 45.
    D. Fuertes Marrón, A. Meeder, S. Sadewasser, R. Würz, C. A. Kaufmann, Th. Glatzel, Th. Schedel-Niedrig, and M. Ch. Lux-Steiner, J. Appl. Phys. 97, 094915 (2005).CrossRefGoogle Scholar
  46. 46.
    W. Mönch, Semiconductor Surfaces and Interfaces, Springer-Verlag, Berlin, 1993.Google Scholar
  47. 47.
    V. V. Zavyalov, J. S. McMurray, and C. C. Williams, J. Appl. Phys. 85, 7774 (1999).CrossRefGoogle Scholar
  48. 48.
    J. Yang, and F. C. Kong, J. App. Phys. Lett. 81, 4973 (2002).CrossRefGoogle Scholar
  49. 49.
    P. Eyben, M. Xu, N. Duhayon, T. Clarysse, S. Callewaert, W. Vandervorst, and J. Vac. Sci. Tech. B 20, 471 (2002).CrossRefGoogle Scholar
  50. 50.
    For a comprehensive review of surface photovoltage phenomena see L. Kronik, Y. Shapira, Surf. Sci. Rep. 37, 1 (1999).CrossRefGoogle Scholar
  51. 51.
    S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer-Verlag, New York-Wien (1984).Google Scholar
  52. 52.
    R. Williams, J. Phys. Chem. Solids 23, 1057 (1962).CrossRefGoogle Scholar
  53. 53.
    A. Vilan, A. Shanzer, and D. Cahen, Nature 404, 166 (2000).CrossRefGoogle Scholar
  54. 54.
    A. A. Asuha, O. Maida, Y. Todokoro, and H. Kobayashi, Appl. Phys. Lett. 80, 4552 (2002).CrossRefGoogle Scholar
  55. 55.
    A. Nitzan and M. A. Ratner, Science 300, 1384 (2003).CrossRefGoogle Scholar
  56. 56.
    N. P. Guisinger, M. E. Greene, R. Basu, A. S. Baluch, and M. C. Hersam, Nano Lett. 4, 55 (2004).CrossRefGoogle Scholar
  57. 57.
    E. H. Nicollian and J. R. Brews, MOS Physics and Technology (John Wiley & Sons, 1982).Google Scholar
  58. 58.
    L. Kronik, L. Burstein, and Y. Shapira, Appl. Phys. Lett. 63, 60 (1993).CrossRefGoogle Scholar
  59. 59.
    R. J. Hamers, Ann. Rev. Phys. Chem. 40, 531 (1989).CrossRefGoogle Scholar
  60. 60.
    S. Saraf and Y. Rosenwaks, Surface Science Letters 574, L35 (2005).CrossRefGoogle Scholar
  61. 61.
    R. Shikler, T. Meoded, N. Fried, and Y. Rosenwaks, Appl. Phys. Lett. 74, 2972 (1999).CrossRefGoogle Scholar
  62. 62.
    H. Flietner, Surface Science 200, 463 (1988).CrossRefGoogle Scholar
  63. 63.
    W. Fussel, M. Schmidt, H. Angermann, G. Mende, and H. Flietner, Nuclear Instruments and Methods in Physics Research A 377, 177 (1996).CrossRefGoogle Scholar
  64. 64.
    E. H. Poindexter, G. J. Gerardi, M. E. Rucckel, P. J. Caplan, N. M. Johnson, and D. K. Bregelsen, J. Appl. Phys. 56, 2844 (1984).CrossRefGoogle Scholar
  65. 65.
    R. Shikler, T. Meoded, N. Fried, and Y. Rosenwaks, Phys. Rev. B 61, 11041 (2000).CrossRefGoogle Scholar
  66. 66.
    R. Shikler, T. Meoded, N. Fried, and Y. Rosenwaks, J. Appl. Phys. 86, 107 (1999).CrossRefGoogle Scholar
  67. 67.
    L. Burgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, J. Appl. Phys. 94, 6129, (2003).CrossRefGoogle Scholar
  68. 68.
    L. Burgi, H Sirringhaus, and R. H. Friend, Appl. Phys. Lett. 80, 2913 (2002).CrossRefGoogle Scholar
  69. 69.
    G. Paasch, H. Peisert, M. Knupfer, J. Fink, and S. Scheinert, J. Appl. Phys. 93, 6084 (2003).CrossRefGoogle Scholar
  70. 70.
    A. Kahn, N. Koch, and G. Weiying, J. Poly. Sci. B. 41, 2529 (2003).CrossRefGoogle Scholar
  71. 71.
    H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mat. 11, 605 (1999).CrossRefGoogle Scholar
  72. 72.
    H. Ishii and K. Seki, IEEE Trans. Electron Devices 44, 1295 (1997).CrossRefGoogle Scholar
  73. 73.
    W. D. Grobman and E. E. Koch, Photoemission in Solids, Vol. 2 (Eds: L. Ley, M. Cardona), Springer, Berlin, 261 (1979).Google Scholar
  74. 74.
    K. Seki, H. Oji, N. Hayashi, Y. Ouchi, and H. Ishii, Proc. SPIE 3797, 178 (1999).CrossRefGoogle Scholar
  75. 75.
    Except for the AFM feedback laser, which operates at 1.85 eV, smaller then the optical gap of Alq3 (∼3.2 eV) but larger than the metal/Alq3 barriers. Sample illumination was minimized by tip shielding and reducing the laser intensity; no changes in CPD were observed using different laser intensities.Google Scholar
  76. 76.
    C. Shen and A. Kahn, Organic Electronics 2, 89 (2001).CrossRefGoogle Scholar
  77. 77.
    S. C. Jr. Fain, L. V. Corbin II, and J. M. McDavid, Rev of Sci. Ins. 47, 345 (1976).CrossRefGoogle Scholar
  78. 78.
    J. M. Heras and E. V. Albano, Zeitschrift fur Physikalische Chemie Neue Folge, 129, 11 (1982).Google Scholar
  79. 79.
    I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Jr. Pascal, Chem. Phys. Let. 327, 3, (2000).CrossRefGoogle Scholar
  80. 80.
    A. Rajagopal, C. I. Wu, and A. Kahn, J. Appl. Phys. 83, 2649 (1998).CrossRefGoogle Scholar
  81. 81.
    S. Belaidi, F. Lebon, P. Girard, G. Leveque, and S. Pagano, Appl. Phys. A 66, S239 (1998).CrossRefGoogle Scholar
  82. 82.
    S. Hudlet, M. Saint Jean, B. Roulet, J. Berger, and C. Guthmann, J. Appl. Phys. 59, 3308 (1995).CrossRefGoogle Scholar
  83. 83.
    S. Karg, J. Steiger, and H. von Seggern, Synthetic Metals 111, 277 (2000).CrossRefGoogle Scholar
  84. 84.
    N. Hayashi, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 92, 3784, (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Y. Rosenwaks
    • 1
  • S. Saraf
    • 1
  • O. Tal
    • 1
  • A. Schwarzman
  • Th. Glatzel
    • 2
  • M. Ch. Lux-Steiner
    • 3
  1. 1.Faculty of EngineeringTel-Aviv UniversityTel-AvivIsrael
  2. 2.Institute of PhysicsUniversity of BaselBasel
  3. 3.Department of Heterogeneous Material Systems (SE2)Hahn-Meitner-Institut BerlinBerlin

Personalised recommendations