This chapter provides an overview of the various types of biosensors and biochips that have been developed for biological and medical applications, along with significant advances and over the last several years in these technologies. Various classification schemes that can be used for categorizing the different biosensor and biochip systems are also discussed.


Peptide Nucleic Acid Molecular Beacon Linear Dynamic Range Lactate Oxidase Surface Plasmon Resonance Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.P. Alarie and T. Vo-Dinh. Polycyc. Aromat. Compd., 8:45, 1996.Google Scholar
  2. [2]
    S.L.R. Barker, R. Kopelman, T.E. Meyer, and M.A. Cusanovich. Anal. Chem., 70:971, 1998.CrossRefGoogle Scholar
  3. [3]
    M. Boncheva, C. Duschl, W. Beck, G. Jung, and H. Vogel. Langmuir, 12:5636, 1996.CrossRefGoogle Scholar
  4. [4]
    C.N. Campbell, T. deLumley-Woodyear, and A. Heller. Fresen. J. Anal. Chem., 364:165, 1993.CrossRefGoogle Scholar
  5. [5]
    D. Charych, Q. Cheng, A. Reichert, G. Kuziemko, M. Stroh, J.O. Nagy, W. Spevak, and R.-C. Stevens. Chem. Biol., 3:113, 1996.CrossRefGoogle Scholar
  6. [6]
    L.C. Clark, Jr. and C. Lions. Ann. Acad. Sci., 102:29, 1962.CrossRefGoogle Scholar
  7. [7]
    M. Culha, D.L. Stokes, G.D. Griffin, and T. Vo-Dinh. Biosens. Bioelectron., 19:1007, 2004.CrossRefGoogle Scholar
  8. [8]
    B.M. Cullum, G.D. Griffin, and T. Vo-Dinh. Anal. Biochem., 1999.Google Scholar
  9. [9]
    D. Diamond. (ed.). Chemical and Biological Sensors. Wiley, New York, 1998.Google Scholar
  10. [10]
    J. Freudenberg, S. Schelle, K. Beck, M. vonSchickfus, and S. Hunklinger. Biosens. Bioelectron., 14:423, 1999.CrossRefGoogle Scholar
  11. [11]
    C. Galan-Vidal, J. Munoz, C. Dominguez, and S. Alegret. Sensor. Actuat. B-Chem., 53:257, 1998.CrossRefGoogle Scholar
  12. [12]
    J.J. Gooding and D.B. Hibbert. Trac-Trend Anal. Chem., 18:525, 1999.CrossRefGoogle Scholar
  13. [13]
    J.G. Hacia, S.A.Woski, J. Fidanza, K. Edgemon, G. McGall, S.P.A. Fodor, and F.S. Collins. Nucleic Acids Res., 26:4975, 1998.CrossRefGoogle Scholar
  14. [14]
    T. Huang, A. Warsinke, T. Kuwana, and F. W. Scheller. Anal. Chem., 70:991–997, 1998.CrossRefGoogle Scholar
  15. [15]
    D. Kroger, M. Liley, W. Schiweck, A. Skerra, and H. Vogel. Biosens. Bioelectron., 14:155, 1999.CrossRefGoogle Scholar
  16. [16]
    N. Isola, D.L. Stokes, and T. Vo-Dinh. Anal. Chem., 70:1352, 1998.CrossRefGoogle Scholar
  17. [17]
    E.A. James, K. Schmeltzer, and F.S. Ligler. Appl. Biochem. Biotechnol., 60:189, 1996.Google Scholar
  18. [18]
    P.M. Kasili, J.M. Song, and T. Vo-Dinh. J. Am. Chem. Soc., 126:2799–2806, 2004.CrossRefGoogle Scholar
  19. [19]
    R. Koncki, G.J. Mohr, and O.S. Wolfbeis. Biosens. Bioelectron., 10:653, 1995.CrossRefGoogle Scholar
  20. [20]
    D. Kriz and K. Mosbach. Anal. Chim. Acta, 300:71, 1995.CrossRefGoogle Scholar
  21. [21]
    I.V. Lamont, R.I. McConnell, and S.P. Fitzgerald. Clin. Chem., 45:A102, 1999.Google Scholar
  22. [22]
    M. Malmquist. Biochem. Soc., T 27:335, 1999.Google Scholar
  23. [23]
    T. McCormack, G. O’Keeffe, B.D. MacCraith, and R. O’Kennedy. Sensor. Actuat. B-Chem., 41:89, 1997.CrossRefGoogle Scholar
  24. [24]
    M. Minunni, M. Mascini, R.M. Carter, M.B. Jacobs, G.J. Lubrano, and G.C. Guilbault. Anal. Chim. Acta, 325:169, 1996.CrossRefGoogle Scholar
  25. [25]
    Z.H. Mo, X.H. Long, and W.L. Fu. Anal. Commun., 36:281–283, 1999.CrossRefGoogle Scholar
  26. [26]
    J. Piehler, A. Brecht, G. Gauglitz, M. Zerlin, C. Maul, R. Thiericke, and S. Grabley. Anal. Biochem., 249:94, 1997.CrossRefGoogle Scholar
  27. [27]
    R.T. Piervincenzi, W.M. Reichert, and H.W. Hellinga. Biosens. Bioelectron., 13:305, 1998.CrossRefGoogle Scholar
  28. [28]
    T.E. Plowman, W.M. Reichert, C.R. Peters, H.K. Wang, D.A. Christensen, and J.N. Herron. Biosens. Bioelectron., 11:149, 1996.CrossRefGoogle Scholar
  29. [29]
    J. Polster, G. Prestel, M. Wollenweber, G. Kraus, and G. Gauglitz. Talanta, 42:2065, 1995.CrossRefGoogle Scholar
  30. [30]
    Z. Rosenzweig and R. Kopelman. Anal. Chem., 68:1408–1413, 1996.CrossRefGoogle Scholar
  31. [31]
    U. Rudel, O. Geschke, and K. Cammann. Electroanalysis, 8:1135, 1996.CrossRefGoogle Scholar
  32. [32]
    P. Sarkar and A.P.F. Turner. Fresen. J. Anal. Chem., 364:154, 1999.CrossRefGoogle Scholar
  33. [33]
    S. Sawata, E. Kai, K. Ikebukuro, T. Iida, T. Honda, and I. Karube. Biosens. Bioelectron., 14:397, 1999.CrossRefGoogle Scholar
  34. [34]
    A. Schmidt, C. StandfussGabisch, and U. Bilitewski. Biosens. Bioelectron., 11:1139, 1996.CrossRefGoogle Scholar
  35. [35]
    S. Singh-Gasson, R.D. Green, Y, Yue, C. Nelson, F. Blattner, R. Sussman, and F. Cerrina. Nat. Biotechnol., 10:974, 1999.CrossRefGoogle Scholar
  36. [36]
    J.M. Song and T. Vo-Dinh. Anal. Bioanal. Chem., 373:399, 2002.CrossRefGoogle Scholar
  37. [37]
    J.M. Song, J. Mobley, and T. Vo-Dinh. J. Chromatogra. B, 783:501, 2003.CrossRefGoogle Scholar
  38. [38]
    J.M. Song and T. Vo-Dinh. Anal. Chimi. Acta, 507:115, 2004.CrossRefGoogle Scholar
  39. [39]
    D.L. Stokes, G.D. Griffin, and T. Vo-Dinh. Fresen. J. Anal. Chem., 369, 2001.Google Scholar
  40. [40]
    T. Thundat, P.I. Oden, and R.J. Warmack. Microscale Thermophys. Eng., 1:185, 1997.CrossRefGoogle Scholar
  41. [41]
    F. Tobalina, F. Pariente, L. Hernandez, H.D. Abruna, and E. Lorenzo. Anal. Chim. Acta, 395:17, 1999.CrossRefGoogle Scholar
  42. [42]
    B.G. Tromberg, M.J. Sepaniak, T. Vo-Dinh, and G.D. Griffin. Anal. Chem., 59:1226, 1987.CrossRefGoogle Scholar
  43. [43]
    R.D. Vaughan, C.K. Sullivan, and G.C. Guilbault. Fresen. J. Anal. Chem., 364:54, 1999.CrossRefGoogle Scholar
  44. [44]
    T. Vo-Dinh. Sensor. Actuat B-Chem., 51:52, 1998.CrossRefGoogle Scholar
  45. [45]
    T. Vo-Dinh. Proceedings of the 6th Annual Biochip Technologies Conference: Chips for Hits’ 99. Berkeley, California, Nov 2–5 1999.Google Scholar
  46. [46]
    T. Vo-Dinh. J. Cell. Biochem., 39(Suppl.):154, 2002.CrossRefGoogle Scholar
  47. [47]
    T. Vo-Dinh, J.P. Alarie, N. Isola, D. Landis, A.L. Wintenberg, and M.N. Ericson. Anal. Chem., 71:358–363, 1999.CrossRefGoogle Scholar
  48. [48]
    T. Vo-Dinh, N. Isola, J.P. Alarie, D. Landis, G.D. Griffin, and S. Allison. Instrum. Sci. Technol., 26:503, 1998.Google Scholar
  49. [49]
    T. Vo-Dinh, K. Houck, and D.L. Stokes. Anal. Chem., 33:3379, 1994.CrossRefGoogle Scholar
  50. [50]
    T. Vo-Dinh, B.M. Cullum, J.P. Alarie, and G.D. Griffin. J. Nanopart. Res., (in press).Google Scholar
  51. [51]
    T. Vo-Dinh, G.D. Griffin, and K.R. Ambrose. Appl. Spectrosc., 40:696, 1986.CrossRefGoogle Scholar
  52. [52]
    T. Vo-Dinh, B.G. Tromberg, G.D. Griffin, K.R. Ambrose, M.J. Sepaniak, and E.M. Gardenhire. Suppl. Spectrosc., 41:735, 1987.CrossRefGoogle Scholar
  53. [53]
    W. Welsch, C. Klein, M. vonSchickfus, and S. Hunklinger. Anal. Chem., 68:2000, 1996.CrossRefGoogle Scholar
  54. [54]
    R.M. Wadkins, J.P. Golden, L. M. Pritsiolas, and F.S. Ligler. Biosens. Bioelectron., 13:407, 1998.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Tuan Vo-Dinh
    • 1
  1. 1.Center for Advanced Biomedical PhotonicsOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations