Dynamic Nanodevices Based on Protein Molecular Motors

  • Dan V. Nicolau

Abstract

Most of the present micro/nano biodevices are designed for a single use, as opposed to ‘classical’ non-biodevices (e.g., from the steam engine to the microchip). Once their function, be that simple molecular recognition like in microarrays or even biomolecular computation as in DNA computation arrays, is fulfilled and the information is passed further to signal and information processing systems, the product becomes functionally obsolete. There are indeed a few notable exceptions, e.g., biosensors and charge-controlled DNA hybridization arrays, but even these function for a limited period of time. This one-use character of micro/nano-biodevices is more an expression of the lack of robustness of their components (e.g., proteins, cells) rather than one of economic sense. Moreover, in advanced biodevices the biomolecular recognition will help to achieve their function, rather than being their function, whichwould allowthese devices to have a continuous instead of one-off mode of operation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.M. Adleman. Molecular computation of solutions to combinatorial problems. Science, 266:1021–1023, 1994.CrossRefGoogle Scholar
  2. [2]
    Y.V. Alexeeva, E.P. Ivanova, D.K. Pham, V. Buljan, and D.V. Nicolau. Controlled self-assembly of actin filaments for dynamic biodevices. Nanobiotechnology, 1:1551–1294, 2006.Google Scholar
  3. [3]
    T. Ando, N.Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda. A High-speed Atomic Force microscope for Studying Biological Macromolecules. Proc. Natl. Acad. Sci. U.S.A., 98:12468–12472, 2001.CrossRefGoogle Scholar
  4. [4]
    S.B. Asokan, L. Jawerth, R.L. Carroll, R.E. Cheney, S. Washburn, and R. Superfine. Two-dimensional manipulation and orientation of actin-myosin systems with dielectrophoresis. NanoLetters, 3:431–437, 2003.Google Scholar
  5. [5]
    G.D. Bachand and C.D. Montemagno. Constructing Organic/Inorganic NEMS Devices Powered by Biomolecular Motors. Biomed. Microdevices, 2:179–184, 2000.CrossRefGoogle Scholar
  6. [6]
    G.D. Bachand, R.K. Soong, H.P. Neves, A. Olkhovets, H.G. Craighead, and C.D. Montemagno. Precision attachment of individual F1-ATPase biomolecular motors on nanofabricated substrates. NanoLetters, 1:42–44, 2001.Google Scholar
  7. [7]
    A. Bernheim-Grosswasser, S. Wiesner, R.M. Golsteyn, M.-F. Carleir, and C. Sykes. The dynamics of actin-based motility depend on surface parameters. Nature, 417:308–311, 2002.CrossRefGoogle Scholar
  8. [8]
    L. Bourdieu, M.O. Magnasco, D.A. Winklemann, and A. Libchaber. Actin filaments on myosin beds: The velocity distribution. Phy. Rev. E, 52:6573–6579, 1995.CrossRefGoogle Scholar
  9. [9]
    K.J. Böhm, R. Stracke, and E. Unger. Speeding up kinesin-driven microtubule gliding in vitro by variation of cofactor composition and physicochemical parameters. Cell Biol. Intl., 24:335–341, 2000.CrossRefGoogle Scholar
  10. [10]
    T.B. Brown and W.O. Hancock. A polarized microtuble array for kinesin-powered-nanoscale assembly and force generation. Nanoletters, 2:1131–1135, 2002.Google Scholar
  11. [11]
    C. Brunner, K.-H. Ernst, H. Hess, and V. Vogel. Lifetime of biomolecules in polymer-based hybrid nanodevices. Nanotechnology, 15:540–548, 2004.CrossRefGoogle Scholar
  12. [12]
    R. Bunk, J. Klinth, J. Rosengren, I. Nicholls, S. Tagerud, P. Omling, A. Mansson, and L. Montelius. Towards a ‘nano-traffic’ system powered by molecular motors. Microelect. Eng., 67–68:899–904, 2003CrossRefGoogle Scholar
  13. [13]
    R. Bunk, J. Klinth, L. Montelius, I.A. Nicholls, P. Omling, S. Tågerud, and A. Månsson. Actomyosin motility on nanostructured surfaces. Biochem. Biophys. Res. Comm., 301:783–788, 2003b.CrossRefGoogle Scholar
  14. [14]
    L.A. Cameron, M.J. Footer, A. Van Oudenaarden, and J.A. Theriot. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl. Acad. Sci. U.S.A., 96:4908–4913, 1999.CrossRefGoogle Scholar
  15. [15]
    D.T. Chiu, E. Pezzoli, H. Wu, A.D. Stroock, and G.M. Whitesides. Using three-dimensional microfluidic networks for solving computationally hard problems. Proc. Natl. Acad. Sci. U.S.A., 2001, 98:2961–2966.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    D. Chretien and R.H. Wade. New data on the microtubule surface lattice. Biol Cell, 71:161–174, 1991.CrossRefGoogle Scholar
  17. [17]
    J. Clemmens, H. Hess, H. Howard, and V. Vogel. Analysis of microtubule guidance in open microfabricated channels coated with the motor protein kinesin. Langmuir, 19:1738–1744, 2003.CrossRefGoogle Scholar
  18. [18]
    J. Clemmens, H. Hess, R. Lipscomb, Y. Hanein, K.F. Bhringer, C.M. Matzke, G.D. Bachand, B.C. Bunker, and V. Vogel. Mechanisms of microtubule guiding on microfabricated kinesin-coated surfaces: chemical and topographic surface patterns. Langmuir, 19:10967–10974, 2003b.CrossRefGoogle Scholar
  19. [19]
    M.L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Science, 221:709–713, 1983.CrossRefGoogle Scholar
  20. [20]
    M.L. Connolly. Analytical molecular surface calculation. J. Appl. Crystall., 16:548–558, 1983.CrossRefGoogle Scholar
  21. [21]
    M.L. Connolly. Measurement of protein surface shape by solid angles. J. Mol. Graph., 4:3–6, 1986.CrossRefGoogle Scholar
  22. [22]
    R. Cooke. The sliding filament model: 1972–2004. J. Gen. Physiol. 123:643–656, 2004CrossRefGoogle Scholar
  23. [23]
    J.R. Dennis, J. Howard, and V. Vogel. Molecular shuttles: directing the motion of microtubules on nanoscale kinesin tracks. Nanotechnology, 10:232–236, 1999.CrossRefGoogle Scholar
  24. [24]
    S. Diez, C. Reuther, C. Dinu, R. Seidel, M. Mertig, W. Pompe, and J. Howard. Stretching and transporting DNA molecules using motor proteins. Nanoletters, 3:1251–1254, 2003.Google Scholar
  25. [25]
    P. Dimroth, H. Wang, M. Grabe, and G. Oster. Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proc. Natl. Acad. Sci. U.S.A., 96:4924–4929, 1999.CrossRefGoogle Scholar
  26. [26]
    M. Dogterom and B. Yurke. Measurement of the force-velocity relation for growing microtubules. Science, 278:856–860, 1997.CrossRefGoogle Scholar
  27. [27]
    D.E. Dupuis, W.H. Guilford, J. Wu, and D.M. Warshaw. Actin filament mechanics in the laser trap. J. Muscle Res. Cell. Motil., 18:17–30, 1997.CrossRefGoogle Scholar
  28. [28]
    J.T. Finner, R.M. Simmons, and J.A. Spudich. Characterization of single actin-mysoin interactions. Biophys. J., 68:291–297, 1995.Google Scholar
  29. [29]
    F. Fulga, S. Myhra, Jr. D.V. Nicolau, and D.V. Nicolau. Interrogation of the dynamics of magnetic microbeads on the meso-scale via electromagnetic detection. Smart Mat. Struct., 11:722–727, 2002.CrossRefGoogle Scholar
  30. [30]
    S.P. Gross, M.A. Welte, S.M. Block, and E.F. Wieschaus. Coordination of opposite-polarity microtubule motors. J. Cell Biol., 156:715–724, 2002.CrossRefGoogle Scholar
  31. [31]
    H. Hess and V. Vogel. Molecular shuttles based on motor proteins: active transport in synthetic environments. J. Biotechnol., 82:67–85, 2001.Google Scholar
  32. [32]
    H. Hess, C.M. Matzke, R.K. Doot, J. Clemmens, G.M. Bachand, B.C. Bunker, and V. Vogel. Molecular shuttles operating undercover: A new photolithographic approach for the fabrication of structured surfaces supporting directed motility. NanoLetters, 3:1651–1655, 2003.Google Scholar
  33. [33]
    H. Higuchi, E. Muto, Y. Inoue, and T. Yanagida. Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. Proc. Natl. Acad. Sci. U.S.A., 94:4395–4400, 1997.CrossRefGoogle Scholar
  34. [34]
    Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, and T.Q.P. Uyeda. Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophys. J., 81:1555–1561, 2001.Google Scholar
  35. [35]
    T.E. Holy, M. Dogterom, B. Yurke, and S. Leibler. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl. Acad. Sci. U.S.A., 94:6228–6231, 1997.CrossRefGoogle Scholar
  36. [36]
    J. Howard, A.J. Hunt, and S. Baek. Assay of microtubule movement driven by single kinesin molecules. Meth. Cell Biol. 39:137–147, 1993.CrossRefGoogle Scholar
  37. [37]
    J. Howard. The movement of kinesin along microtubules. Annu. Rev. Physiol., 58:703–729, 1996CrossRefGoogle Scholar
  38. [38]
    J. Howard. Molecular motors: Structural adaptations to cellular functions. Nature, 389:561–567, 1997.CrossRefGoogle Scholar
  39. [39]
    J. Howard. Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, Inc., 2001.Google Scholar
  40. [40]
    A.F. Huxley. Muscle structure and theories of contraction. Progr. Biophys. BioPhys. Chem., 7:255–318, 1957.Google Scholar
  41. [41]
    E. Insinna. Biocomputation and Nonlinear Dynamics in the Primitive Sensorimotor Mechanism of Euglena Gracilis. Biocomputing and emergent computation: Proceedings of BCEC97, Dan Lundh, Björn Olsson, Ajit Narayanan (Eds.). World Scientific, pp. 218–227, 1997.Google Scholar
  42. [42]
    A. Ishijima, Y. Harada, H. Kojima, T. Funatsu, H. Higuchi, and T. Yanagida. Single molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with microneedle: unitary steps and forces. Biophysi. J., 70:383–400, 1996.Google Scholar
  43. [43]
    L. Jia, S.G. Moorjani, T.M. Jackson, W.O. Hancock. Microscale transport and sorting by kinesin molecular motors. Biomed. Microdev., 6:67–74, 2004.CrossRefGoogle Scholar
  44. [44]
    K. Kawaguchi and S. Ishiwata. Temperature dependence of force, velocity, and processivity of single kinesin molecules. Biochem. Biophys. Res. Commun., 272:895–899, 2000.CrossRefGoogle Scholar
  45. [45]
    M. Kawai, K. Kawaguchi, M. Saito, and S. Ishiwata. Temperature change does not affect force between single actin filaments and HMM from rabbit muscles. Biophys. J., 78:3112–3119, 2000.CrossRefGoogle Scholar
  46. [46]
    M. Kekic, G. Solana, D.V. Jr. Nicolau C.G. dos Remedios, and D.V. Nicolau. Nanosensing device based on actomyosin motility. (in preparation)Google Scholar
  47. [47]
    M.S.Z. Kellermeyer and G.H. Pollack. Rescue of in vitro motility halted at high ionic strength by reduction of ATP to submicromolar levels. Biochim. Biophys. Acta, 1277:107–114, 1996.CrossRefGoogle Scholar
  48. [48]
    K. Jr. Kinosita, R. Yasuda, H. Noji, S. Ishiwata, and M. Yoshida. F1-ATPase; a rotary motor made of a single molecule. Cell, 93:21–24, 1998.CrossRefGoogle Scholar
  49. [49]
    S.J. Kron and J.A. Spudich. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl. Acad. Sci. U.S.A., 83:6272–6276, 1986.CrossRefGoogle Scholar
  50. [50]
    B. Liang, Y. Chen, C.-K. Wang, Z. Luo, M. Regnier, A.M. Gordon, and P.B. Chase. Ca2+ regulation of rabbit skeletal muscle thin filament sliding: Role of cross-bridge number. Biophys. J., 85:1775–1786, 2003.Google Scholar
  51. [51]
    L. Limberis and R.J. Stewart. Toward kinesin-powered microdevices. Nanotechnology, 11:47–51, 2000.CrossRefGoogle Scholar
  52. [52]
    H.Q. Liu, J.J. Schmidt, G.D. Bachand, S.S. Rizk, L.L. Looger, H.W. Hellinga, and C.D. Montemagno. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Mat., 3:173–177, 2002.CrossRefGoogle Scholar
  53. [53]
    R.W. Lymn and E.W. Taylor. Mechanism of adenosine triphosphate by actomyosin. Biochemistry, 10:4617–4624, 1971.CrossRefGoogle Scholar
  54. [54]
    C. Mahanivong, J.P. Wright, M. Kekic, D.K. Pham, C. dos Remedios, and D.V. Nicolau. Manipulation of the Motility of Protein Molecular Motors on Microfabricated Substrates. Biomed. Microdev., 4:111–116, 2002.CrossRefGoogle Scholar
  55. [55]
    R. Martinez-Neira, M. Kekic, V. Buljan, D.V. Nicolau, and C.G. dos Remedios. A Novel Biosensor for Mercuric Ions Based on Motor Proteins. Biosens. Bioelect., 19:(in print), 2004.Google Scholar
  56. [56]
    Y. Miyamoto, E. Muto, T. Mashimo, A.H. Iwane, I. Yoshiya, and T. Yanagida. Direct inhibition of microtubule-based kinesin motility by local anesthetics. Biophys. J., 78:940–949, 2000.Google Scholar
  57. [57]
    C. Montemagno and G. Bachand. Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology, 10:225–231, 1999.CrossRefGoogle Scholar
  58. [58]
    P.B. Moore, H.E. Huxley, and D.J. DeRosier. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J. Mol. Biol., 50:279–295, 1970.CrossRefGoogle Scholar
  59. [59]
    M. Morimatsu, A. Nakamura, H. Sumiyoshi, N. Sakaba, H. Taniguchi, K. Kohama, and S. Higashi-Fujime. The molecular structure of fastest myosin from green algae, Chara. Biochem. Biophys. Res. Commun., 270:147–152, 2000.CrossRefGoogle Scholar
  60. [60]
    T. Nakagaki, H. Yamada, and A. Tóth. Maze-solving by an amoeboid organism. Nature, 407:470, 2000.CrossRefGoogle Scholar
  61. [61]
    H. Nakayama, T. Yamaga, and Y. Kunioka. Fine profile of actomyosin motility fluctuation revealed by using 40-nm probe beads. Biochem. Biophys. Res. Comm., 246:261–266, 1998.CrossRefGoogle Scholar
  62. [62]
    D.V. Nicolau, H. Suzuki, S. Mashiko, T. Taguchi, and S. Yoshikawa. Movement of actin filaments on microlithographically-functionalized myosin tracks. Biophys. J., 77:1126–1134, 1999.Google Scholar
  63. [63]
    D.V. Nicolau and R. Cross. Protein profiled features patterned via bilayer microlithography and confocal microscopy. Biosen. Bioelect., 15:85–91, 2000.CrossRefGoogle Scholar
  64. [64]
    D.V. Jr. Nicolau and D.V. Nicolau. Computing with the actin-myosin molecular motor system. In Biomedical Applications of Micro-and Nanoengineering. SPIE Proc. 4937, 219–225, 2002.Google Scholar
  65. [65]
    D.V. Jr. Nicolau, F. Fulga, and D.V. Nicolau. Impact of protein adsorption on the geometry design of microfluidics devices. Biomed. Microdev., 5:227–233, 2003.CrossRefGoogle Scholar
  66. [66]
    D.V. Nicolau. Nanodevices based on linear protein molecular motors: Challenges and opportunities. In: J. Reif (Ed.), Foundations of Nanoscience: Self-Assembled Architectures and Devices, 2004.Google Scholar
  67. [67]
    H. Noji, R. Yasuda, M. Yoshida, and Jr, K. Kinosita. Direct observation of the rotation of F1ATPase. Nature, 386:299–302, 1997.CrossRefGoogle Scholar
  68. [68]
    K. Oiwa. Protein motors: Their mechanical properties and applications to nanometer-scale devices. Mat. Sci. Forum, 426–432:2339–2344, 2003.Google Scholar
  69. [69]
    F. Oosawa and S. Asakura. Thermodynamics of polymerization of protein. New York Academic Press, 1975.Google Scholar
  70. [70]
    E.M. Ostap, T. Yanagida, and D.D. Thomas. Orientational distribution of spin labeled actin oriented by flow. Biophys. J., 63:966–975, 1992.Google Scholar
  71. [71]
    T.D. Pollard. Rate constants for the reactions of ATP-and ADP-actin with the ends of actin filaments. J. Cell Biol., 103:2747–2754, 1986CrossRefGoogle Scholar
  72. [72]
    T.D. Pollard, L. Blanchoin, and R.D. Mullins. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct., 29:545–576, 2000.CrossRefGoogle Scholar
  73. [73]
    I. Rayment, H.M. Holden, M. Whittaker, C.B. Yohn, M. Lorenz, K.C. Holmes, and R.A. Milligan. Structure of the actin-myosin complex and its implications in muscle contraction. Science, 261:58–65, 1993.CrossRefGoogle Scholar
  74. [74]
    D. Riveline, A. Ott, F. Julicher, D.A. Winkelmann, O. Cardoso, J.J. Lacapere, S. Magnusdottir, J.L. Viovy, L. Gorre-Talini, and J. Prost. Acting on actin: the electric motility assay. Eur. Biophys. J., 27:403–408, 1998.CrossRefGoogle Scholar
  75. [75]
    R.S. Rock, M. Rief, A.D. Mehta, and J.A. Spudich. In vitro Assays of Processive Myosin Motors. Methods, 22:373–381, 2000.CrossRefGoogle Scholar
  76. [76]
    A. Roux, G. Cappello, J. Cartaud, J. Prost, B. Goud, and P. Bassereau. Aminimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc. Natl. Acad. Sci. USA, 99:5394–5399, 2002.CrossRefGoogle Scholar
  77. [77]
    M.V. Sataric and J.A. Tuszynski. Relationship between the nonlinear ferroelectric and liquid crystal models for microtubules. Physical Rev. E., 67:011901–11, 2003.CrossRefGoogle Scholar
  78. [78]
    M. Sataric, J. Tuszynski, and R. Zakula. Kink-like excitations as an energy-transfer mechanism in microtubules. Phys. Rev. E., 48:589–597, 1993.CrossRefGoogle Scholar
  79. [79]
    I. Sase, H. Miyata, S. Ishiwata, and K. Kinosita. Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc. Natl. Acad. Sci. U.S.A., 94:5646–5650, 1997.CrossRefGoogle Scholar
  80. [80]
    M. Schliwa and G. Woehlke. Molecular motors. Nature, 422:759–765, 2003.CrossRefGoogle Scholar
  81. [81]
    J.J. Schmidt, X.Q. Jiang, and C.D. Montemagno. Force tolerances of hybrid nanodevices. Nanoletters, 11:1229–1233, 2002.Google Scholar
  82. [82]
    M.P. Sheetz and J.A. Spudich. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature, 303:31–35, 1983.CrossRefGoogle Scholar
  83. [83]
    M.P. Sheetz, R. Chasan, and J.A. Spudich. ATP-dependent movement of myosin in vitro: Characterization of a quantitative assay. J. Cell Biol., 99:1867–1874, 1984.CrossRefGoogle Scholar
  84. [84]
    D. Shi, A.V. Somlyo, A.P. Somlyo, and Z. Shao. Visualizing filamentous actin on lipid bilayers by atomic force microscopy in solution. J. Microscopy, 201:377–382, 2001.MathSciNetCrossRefGoogle Scholar
  85. [85]
    R.K. Soong, G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, and C.D. Montemagno. Powering a nanodevice with a biomolecular motor. Science, 290:1555–1558, 2000.CrossRefGoogle Scholar
  86. [86]
    R.K. Soong, H.P. Neves, J.J. Schmidt, G.D. Bachand, and C.D. Montemagno. Engineering Issues in the fabrication of a hybrid nano-propeller system powered by F1-ATPase, Biomed. Microdev., 3:71–73, 2001.CrossRefGoogle Scholar
  87. [87]
    J.A. Spudich, S.J. Kron, and M.P. Sheetz. Movement of myosin-coated beads on oriented filaments reconstituted from purified actin. Nature, 315:584–586, 1985.CrossRefGoogle Scholar
  88. [88]
    P. Stracke, K.J.Böhm, J. Burgold, H.J. Schacht, and E. Unger. Physical and technical parameters determining the functioning of a kinesin. Nanotechnology, 11:52–56, 2000.CrossRefGoogle Scholar
  89. [89]
    R. Stracke, K.J. Böhm, L. Wollweber, J.A. Tuszynski, and E. Unger. Analysis of the migration behaviour of single microtubules in electric fields. Biochem. Biophys. Res. Comm., 293:602–609, 2002.CrossRefGoogle Scholar
  90. [90]
    H. Suda and A. Ishikawa. Accelerative sliding of myosin-coated glass beads under suspended condition from actin paracrystal. Biochem. Biophys. Res. Comm., 237:427–431, 1997.CrossRefGoogle Scholar
  91. [91]
    M. Sundberg, J.P. Rosengren, R. Bunk, J. Lindahl, I.A. Nicholls, S. Tågerud, P. Omling, L. Montelius, and A. Månsson. Silanized surfaces for in vitro studies of actomyosin function and nanotechnology applications. Analyt. Biochem., 323:127–138, 2003.CrossRefGoogle Scholar
  92. [92]
    H. Suzuki, K. Oiwa, A.Yamada, H. Sakakibara, H. Nakayama, and S. Mashiko. Linear arrangement of motor protein on a mechanically deposited fluoropolymer thin film. Jap. J. Appl. Phys., Part 1, 34:3937–3941, 1995.CrossRefGoogle Scholar
  93. [93]
    H. Suzuki, A. Yamada, K. Oiwa, H. Nakayama, and S. Mashiko. Control of actin moving trajectory by patterned poly(methylmethacrylate) tracks. Biophys. J., 72:1997–2001, 1997.Google Scholar
  94. [94]
    N. Suzuki, H. Miyata, S. Ishiwata, and K. Jr. Kinosita. Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay. Biophys. J., 70:401–408, 1996.Google Scholar
  95. [95]
    K. Svoboda, C.F. Schmidt, B.J. Schnapp, and S.M. Block. Direct observation of kinesin stepping by optical trapping inteferometry. Nature, 365:721–727, 1993.CrossRefGoogle Scholar
  96. [96]
    H. Tanaka, A. Ishijima, M. Honda, K. Saito, and T. Yanagida. Orientation dependence of displacements by a single one headed myosin relative to the actin filament. Biophys. J., 75:1866–1894, 1998.Google Scholar
  97. [97]
    K.A. Taylor and D.W. Taylor. Formation of 2-D paracrystals of F-actin on phospholipid layers mixed with quaternary ammonium surfactants. J. Struct. Biol., 108:140–147, 1992.CrossRefGoogle Scholar
  98. [98]
    K.A. Taylor and D.W. Taylor. Formation of two-dimensional complexes of F-actin and crosslinking proteins on lipid monolayers: demonstration of unipolar alpha-actinin-Factin crosslinking. Biophys. J., 67:1976–1983, 1994.Google Scholar
  99. [99]
    K.A. Taylor and D.W. Taylor. Structural studies of cytoskeletal arrays formed on lipid monolayers. J. Struct. Biol., 128:75–81, 1999.CrossRefGoogle Scholar
  100. [100]
    J.A. Theriot. The polymerization motor. Traffic, 1:19–28, 2000.CrossRefGoogle Scholar
  101. [101]
    Y.Y. Toyoshima, S.J. Kron, and J.A. Spudich. The myosin step size: Measurement of the unit displacement per ATP hydrolyzed in an in vitro motility assay. Proc. Natl. Acad. Sci. U.S.A., 87:7130–7134, 1990.CrossRefGoogle Scholar
  102. [102]
    D.C. Turner, C. Chang, K. Fang, S.L. Brandow, and D.B. Murphy. Selective adhesion of functional microtubules to patterned silane surfaces. Biophys. J., 69:2782–2789, 1995.Google Scholar
  103. [103]
    D. Turner, C. Chang, K. Fang, P. Cuomo, and D. Murphy. Kinesin movement on glutaraldehyde-fixed microtubules. Anal. Biochem., 242:20–25, 1996.CrossRefGoogle Scholar
  104. [104]
    G. Uchida, Y. Mizukami, T. Nemoto, and Y. Tsuchiya. Sliding motion of magnetizable beads coated with Chara motor protein in a magnetic field. J. Phys. Soc. Japan, 67:345–350, 1998.CrossRefGoogle Scholar
  105. [105]
    T.Q.P. Uyeda, H.M. Warrick, S.J. Kron, and J.A. Spudich. Quantized velocities at low myosin densities in an in vitro motility assay. Nature, 352:307–311, 1991.CrossRefGoogle Scholar
  106. [106]
    R.D. Vale, T.S. Reese, and M.P. Sheetz. Identification of a novel force generating protein, kinesin, involved in microtubule based motility. Cell, 42:39–50, 1985.CrossRefGoogle Scholar
  107. [107]
    R.D. Vale and H. Hotani. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J. Cell Biol., 107:2233–2241, 1988.CrossRefGoogle Scholar
  108. [108]
    R. Vale, D. Pierce, J. Spudich, and L.S.B. Goldstein. Assays for detecting modulators of cytoskeleton function. WO 99/11814, 1998.Google Scholar
  109. [109]
    R.D. Vale and R.A. Milligan. The way things move: Looking under the hood of molecular motor proteins. Science, 288:88:95, 2000.CrossRefGoogle Scholar
  110. [110]
    P. VanBuren, K. Begin, and D.M. Warshaw. Fluorescent phalloidin enables visualization of actin without effects on myosin’s actin filament sliding velocity and hydrolytic properties in vitro. J. Mol. Cell. Cardiol., 30:2777–2783, 1998.CrossRefGoogle Scholar
  111. [111]
    R.A. Walker, E.T. O’Brian, N.K. Pryer, M.F. Soboeiro, W.A. Voter, H.P. Erickson, and E.D. Salmon. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol., 107:1437–1448, 1988.CrossRefGoogle Scholar
  112. [112]
    F. Wang, L. Chen, O. Arcucci, E.V. Harvey, B. Bowers, Y. Xu, J.A. Hammer, 3rd, and J.R. Sellers. Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J. Biol. Chem., 275:4329–4335, 2000.CrossRefGoogle Scholar
  113. [113]
    G.S. Watson, C. Cahill, J. Blach, S. Myhra, Y. Alekseeva, E.P. Ivanova, and D.V. Nicolau. Actin Nanotracks for Hybrid Nanodevices Based on Linear Protein Molecular Motors. In: J.T. Borenstein, P. Grodzinski, L.P. Lee, J. Liu, Z. Wang, D. McIlroy, L. Merhari, J.B. Pendry, D.P. Taylor (eds.), Nanoengineered Assemblies and Advanced Micro/Nanosystems. Proceedings of MRS Spring Meeting, San Francisco, April 2004, (in print).Google Scholar
  114. [114]
    D.A. Winkelmann, L. Bourdieu, A. Ott, F. Kinose, and A. Libchaber. The flexibility of attachment of myosin on surfaces influences F-actin motion, Biophys. J., 68:2444–2453, 1995.Google Scholar
  115. [115]
    J.P. Wright, D.K. Pham, C. Mahanivong, M. Kekic, C.G. dos Remedios, and D.V. Nicolau. Micropatterning of Myosin on O-Acryloyl Acetophenone Oxime (AAPO), Layered with Bovine Serum Albumin (BSA). Biomed. Microdev., 4:205–211, 2002.CrossRefGoogle Scholar
  116. [116]
    H. Yamasaki and H. Nakayama. Fluctuation analysis of myosin-coated bead movement along actin bundles of nitella. Biochem. Biophys. Res. Comm., 221:831–835, 1996.CrossRefGoogle Scholar
  117. [117]
    T. Yanagida, M. Nakase, K. Nishiyama, and F. Oosawa. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature, 307:58–60, 1984.CrossRefGoogle Scholar
  118. [118]
    M. Yoshida, E. Muneyuki, and T. Hisabori. ATP synthase-a marvelous rotary engine of the cell. Nat. Rev. Mol. Cell. Biol., 2:669–677, 2001.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Dan V. Nicolau
    • 1
  1. 1.Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK

Personalised recommendations