Fire, Climate Change, and Carbon Cycling in the Boreal Forest pp 19-30

Part of the Ecological Studies book series (ECOLSTUD, volume 138) | Cite as

Boreal Ecosystems in the Global Carbon Cycle

  • Eric S. Kasischke

Abstract

The terrestrial ecosystems found in the boreal region cover a little less than 17% of the earth’s land surface, yet they contain more than 30% of all carbon present in the terrestrial biome (Table 2.1). For the purposes of this discussion, we divide the ecosystems found in this region into three broad categories: boreal forests, peatlands interspersed throughout the boreal forest, and tundra. Although there is room for debate as to the exact definition of these categories, they are used here for descriptive purposes only and are based on the criteria developed by Apps and colleagues (1993) to estimate the amount of carbon present in boreal forests and tundra. The percentages of total area and total terrestrial carbon were derived by using the estimates of Smith and co-workers (1993).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alaska Fire Service. 1995. 1995 Fire Statistics and Season Summary. Bureau of Land Management, Fairbanks, AK.Google Scholar
  2. Alexeyev, V.A., and R.A. Birdsey. 1998. Carbon Storage in Forests and Peatlands of Russia. General Technical Report NE-244. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Radnor, PA.Google Scholar
  3. Apps, M.J., and D.T. Price, eds. 1996. Forest Management and the Global Carbon Cycle. NATO ASI Series, subseries 1, vol. 40, Global Environmental Change. Springer-Verlag, Berlin.Google Scholar
  4. Apps, M.J., W.A. Kurz, R.J. Luxmoore, L.O. Nilsson, R.A. Sedjo, R. Schmidt, L.G. Simpson, and T.S. Vinson. 1993. Boreal forests and tundra. Water Air Soil Pollut. 70:39–53.CrossRefGoogle Scholar
  5. Auclair, A.N.D. 1983. The role of fire in lichen-dominated tundra and forest-tundra, pp. 235–253 in R.W. Wein and D.A. MacLean, eds. The Role of Fire in Northern Circumpolar Ecosystems. J. Wiley & Sons, New York.Google Scholar
  6. Brown, S. 1996a. Tropical forests and the global carbon cycle: estimating state and change in biomass density, pp. 135–144 in M.J. Apps and D.T. Price, eds. Forest Ecosystems and Forest Management and the Global Carbon Cycle. NATO ASI Series I, Global Environmental Change. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  7. Brown, S.A. 1996b. Management of forests for mitigation of greenhouse gas emissions, pp. 773–796 in R.T. Watson, M.C. Zinyowera, and R.H. Moss, eds. Climate Change 1995 -Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis. Cambridge University Press, Cambridge, UK.Google Scholar
  8. Brown, S., C.A.S. Hall, W. Knabe, J. Raich, M.C. Trexler, and P. Woomer. 1993. Tropical forests: their past, present, and potential future role in the terrestrial carbon budget. Water Air Soil Pollut. 70:71–94.CrossRefGoogle Scholar
  9. Cahoon, D.R., Jr., B.J. Stocks, J.S. Levine, W.R. Cofer III, and J.M. Pierson. 1994. Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. J. Geophys. Res. 99:18,627–18,638.Google Scholar
  10. Cahoon, D.R., Jr., B.J. Stocks, J.S. Levine, W.R. Cofer III, and J.A. Barber. 1996. Monitoring the 1992 forest fires in the boreal ecosystem using NOAA AVHRR satellite imagery, pp. 795–802 in J.S. Levine, ed. Biomass Burning and Climate Change. Vol. 2. Biomass Burning in South America, Southeast Asia, and Temperate and Boreal Ecosystems, and the Oil Fires of Kuwait. MIT Press, Cambridge, MA.Google Scholar
  11. Cayford, J.H., and D.J. McRae. 1983. The ecological role of fire in jack pines, pp. 183–200 in R.W. Wein and D.A. MacLean, eds. The Role of Fire in Northern Circumpolar Ecosystems. John Wiley & Sons, New York.Google Scholar
  12. Christensen, N.L., J.K. Agee, P.F. Broussard, J. Hughes, D.H. Knight, G.W. Minshall, J.M. Peek, S.J. Pyne, F.J. Swanson, J.W. Thomas, S. Wells, S.E. Williams, and H.A. Wright. 1989. Interpreting the Yellowstone fires of 1988. Bioscience 39:678–685.CrossRefGoogle Scholar
  13. Conard, S.G., and G.A. Ivanova. 1998. Wildfire in Russian boreal forests potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ. Pollut. 98:305–313.CrossRefGoogle Scholar
  14. Dixon, R.K., and O.N. Krankina. 1993. Forest fires in Russia: carbon dioxide emissions to the atmosphere. Can. J. For. Res. 23:700–705.CrossRefGoogle Scholar
  15. Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, and P. Tans. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446.PubMedCrossRefGoogle Scholar
  16. Flannigan, M.D., and J.D. Harrington. 1988. A study of the relation of meteorologic variables to monthly provincial area burned by wildfire in Canada. J. Appl. Meteor. 27:441–452.CrossRefGoogle Scholar
  17. Furyaev, V.V., R.W. Wein, and D.A. MacLean. 1983. Fire influences in Abies-dominated forests, pp. 221–232 in W. Wein and D.A. MacLean, eds. The Role of Fire in Northern Circumpolar Ecosystems. John Wiley & Sons, New York.Google Scholar
  18. Guggenheim, D.E. 1997. Management of forest fires to maximize carbon sequestration in temperate and boreal forests. World Resources Rev. 9:46–47.Google Scholar
  19. Heath, L.S., P. Kaupi, P. Burschel, H.D. Gregor, R. Guderian, G.H. Kohlmaier, S. Lorenz, D. Overdieck, F. Scholz, H. Thomasius, and M. Weber. 1993. Carbon budget of the temperature forest zone. Water Air Soil Pollut. 70:55–69.CrossRefGoogle Scholar
  20. Holling, C.S. 1992. The role of forest insects in structuring the boreal landscape, pp. 126143 in H.H. Shugart, R. Leemans, and G.B. Bonan, eds. A Systems Analysis of the Global Boreal Forest. University Press, Cambridge, UK.Google Scholar
  21. Houghton, J.T., L.G. Meiro Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell, eds. 1996. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report on the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  22. Houghton, J.T., G.J. Jenkins, and J.J. Ephraums, eds. 1990. Climate Change—The IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK.Google Scholar
  23. Houghton, R.A. 1996. Land-use change and the temporal record, pp. 117–134 in M.J. Apps and D.T. Price, eds. Forest Management and the Global Carbon Cycle. NATO ASI Series I, Global Environmental Change. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  24. Kasischke, E.S., N.H.F. French, P. Harrell, N.L. Christensen, Jr., S.L. Ustin, and D. Barry. 1993. Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite data. Remote Sens. Environ. 44:61–71.CrossRefGoogle Scholar
  25. Kasischke, E.S., N.H.F. French, L.L. Bourgeau-Chavez, and N.L. Christensen, Jr. 1995. Estimating release of carbon from 1990 and 1991 forest fires in Alaska. J Geophys. Res. 100:2941–2951.CrossRefGoogle Scholar
  26. Kasischke, E.S., K. Bergen, R. Fennimore, F. Sotelo, G. Stephens, A. Janetos, and H.H. Shugart. 1999. Satellite imagery gives clear picture of Russia’s boreal forest fire. EOS— Trans. Am. Geophys. Union 80:141,147.Google Scholar
  27. Kauppi, P.E. 1996. Carbon budget of temperate zone forests during 1851–2050, pp. 191–198 in M.J. Apps and D.T. Price, eds. Forest Management and the Global Carbon Cycle. NATO ASI Series, subseries 1, vol. 40, Global Environmental Change. SpringerVerlag, Berlin.CrossRefGoogle Scholar
  28. Korovin, G.N. 1996. Analysis of distribution of forest fires in Russia, pp.112–128 in J.G. Goldammer and V.V. Furyaev, eds. Fire in Ecosystems of Boreal Eurasia. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  29. Krankina, O.N. 1993. Forest Fires in the Former Soviet Union: Past, Present and Future Greenhouse Gas Contributions to the Atmosphere. EPA/600R-93/084. U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  30. Paavilainen, E., and J. Paivanen. 1995. Peatland Forestry. Ecological Studies 111. Springer-Verlag, New York.Google Scholar
  31. Shugart, H.H. 1993. Global change, pp. 3–21 in A.M. Solomon and H.H. Shugart, eds. Vegetation Dynamics and Global Change. Chapman & Hall, New York.CrossRefGoogle Scholar
  32. Shvidenko, A., S. Nilsson, and V. Roshkov. 1995. Possibilities for Increased Carbon Sequestration Through Improved Protection of Russian Forests. IIASA Report WP-95–86. International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  33. Smith, T.M., W.P. Cramer, R.K. Dixon, R. P. Neilson, and A. M. Solomon. 1993. The global terrestrial carbon cycle. Water Air Soil Pollut. 70:19–37.CrossRefGoogle Scholar
  34. Stocks, B.J. 1991. The extent and impact of forest fires in northern circumpolar countries, pp. 197–202 in J.S. Levine, ed. Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications. MIT Press, Cambridge, MA.Google Scholar
  35. Stocks, B.J., B.S. Lee, and D.L. Martell. 1996. Some potential carbon budget implications of fire management in the boreal forest, pp. 89–96 in M.J. Apps and D.T. Price, eds. Forest Management and the Global Carbon Cycle. NATO ASI Series, subseries 1, vol. 40, Global Environmental Change. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  36. Van Cleve, K., L. Oliver, R. Schlentner, L.A. Viereck, and C.T. Dyrness. 1983. Productivity and nutrient cycling in taiga forest ecosystems. Can. J. For. Res. 13:747–766.CrossRefGoogle Scholar
  37. Van Cleve, K., F.S. Chapin, III, P.W. Flanagan, L.A. Viereck, and C.T. Dyrness, eds. 1986. Forest Ecosystems in the Alaskan Taiga. Ecological Studies 57. Springer-Verlag, New York.Google Scholar
  38. Viereck, L.A. 1983. The effects of fire in black spruce ecosystems of Alaska and northern Canada, pp. 201–220 in R.W. Wein and D.A. MacLean, eds. The Role of Fire in Northern Circumpolar Ecosystems. John Wiley & Sons, Chichester, UK.Google Scholar
  39. Wein, R.W. 1976. Frequencies and characteristics of tundra fires. Arctic 29:213–222.Google Scholar
  40. Wein, R.W. 1983. Fire behavior and ecological effects in organic terrain, pp. 81–95 in R.W. Wein and D.A. MacLean, eds. The Role of Fire in Northern Circumpolar Ecosystems. John Wiley & Sons, New York.Google Scholar
  41. Zoltai, S.C., and P.J. Martikainen. 1996. The role of forested peatlands in the global carbon cycle, pp. 47–58 in M.J. Apps and D.T. Price, eds. Forest Ecosystems, Forest Management and the Global Carbon Cycle. NATO ASI Series, vol. 140. Springer-Verlag, Heidelberg.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2000

Authors and Affiliations

  • Eric S. Kasischke

There are no affiliations available

Personalised recommendations