Advertisement

Influence of Fire on Long-Term Patterns of Forest Succession in Alaskan Boreal Forests

  • Eric S. Kasischke
  • Nancy H. F. French
  • Katherine P. O’Neill
  • Daniel D. Richter
  • Laura L. Bourgeau-Chavez
  • Peter A. Harrell
Part of the Ecological Studies book series (ECOLSTUD, volume 138)

Abstract

The cold climate and resulting low decomposition rates in the ground layers of boreal forests (such as those found in interior Alaska) result in the development of deep organic soils. In turn, these soils have an important role in many physical, chemical, and biological processes (Van Cleve et al. 1986). In combination with the slope, aspect, elevation, and composition of the underlying mineral soil profile of a specific site (Swanson 1996), organic soils are particularly influential in regulating ground temperature and moisture. As a general rule, the presence of a deep organic soil layer serves to insulate the forest floor during the growing season, causing colder temperatures than would otherwise occur. In many forested sites, autogenic cooling resulting from deepening organic soil layers eventually leads to the formation of permafrost, which, in turn, impedes drainage and substantially increases soil moisture (Van Cleve and Viereck 1981; Van Cleve et al. 1983a, b).

Keywords

Boreal Forest Organic Soil Ground Temperature Fire Severity Ground Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonan, G.B., H.H. Shugart, and D.L. Urban. 1990. The sensitivity of some high-latitude boreal forests to climate parameters. Clim. Change 16:9–29.CrossRefGoogle Scholar
  2. Brown, R.J.E. 1983. The effects of fire on the permafrost ground thermal regime, pp. 97–110 in R.W. Wein and D.A. MacLean, eds. The Role of Fire in Northern Circumpolar Ecosystems. J. Wiley &; Sons, New York.Google Scholar
  3. Clarke, J.S. 1988. Effect of climate change on fire regimes in northwestern Minnesota. Nature 334:233–235.CrossRefGoogle Scholar
  4. Drury, W.H. 1956. Bog flats and physiographic processes on the upper Kuskokwim River Region, Alaska. Contrib. Gray Herbarium Harvard Univ. 138. Cambridge, MA.Google Scholar
  5. Dyrness, C.T., and R.A. Norum. 1983. The effects of experimental fires on black spruce forest floors in interior Alaska. Can. J For. Res. 13:879–893.CrossRefGoogle Scholar
  6. Dyrness, C.T., L.A. Viereck, and K. Van Cleve. 1986. Fire in taiga communities of interior Alaska, pp. 74–86 in K. Van Cleve, F.S. Chapin III, P.W. Flanagan, L.A. Viereck, and C.T. Dyrness, eds. Forest Ecosystems in the Alaskan Taiga. Ecological Studies 57. Springer-Verlag, New York.CrossRefGoogle Scholar
  7. Flannigan, M.D., and C.E. Van Wagner. 1991. Climate change and wildfire in Canada, Can. J. For. Res. 21:61–72.Google Scholar
  8. French, N.H.F., E.S. Kasischke, R.D. Johnson, L.L. Bourgeau-Chavez, A.L. Frick, and S.L. Ustin. 1996a. Using multi-sensor satellite data to monitor carbon flux in Alaskan boreal forests, pp. 808–826 in J.S. Levine, ed. Biomass Burning and Climate Change, Vol. 2: Biomass Burning in South America, Southeast Asia, and Temperate and Boreal Ecosystems, and the Oil Fires of Kuwait. MIT Press, Cambridge, MA.Google Scholar
  9. French, N.H.F., E.S. Kasischke, L.L. Bourgeau-Chavez, P. Harrell, and N.L. Christensen, Jr. 1996b. Monitoring variations in soil moisture on fire disturbed sites in Alaska using ERS-1 SAR imagery. Int. J. Remote Sens. 17:3037–3053.CrossRefGoogle Scholar
  10. Hansen, J., R. Ruedy, M. Sato, and R. Reynolds. 1996. Global surface air temperature in 1995: return to pre-Pinatubo level. Geophys. Res. Lett. 23:1665–1668.CrossRefGoogle Scholar
  11. Jacoby, G.C., and R.D. D’Arrigo. 1995. Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochem. Cycles 9:227–234.CrossRefGoogle Scholar
  12. Kasischke, E.S., N.H.F. French, L.L. Bourgeau-Chavez, and N.L. Christensen, Jr. 1995a. Estimating release of carbon from 1990 and 1991 forest fires in Alaska. J. Geophys. Res. 100:2941–2951.CrossRefGoogle Scholar
  13. Kasischke, E.S., N.L. Christensen, Jr., and B.J. Stocks. 1995b. Fire, global warming and the mass balance of carbon in boreal forests. Ecol. Appl. 5:437–451.CrossRefGoogle Scholar
  14. Keeling, C.D., J.F.S. Chin, and T.P. Whorf. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 records. Nature 382:146–149.CrossRefGoogle Scholar
  15. Mackay, J.R. 1995. Active layer changes (1968 to 1993) following the forest-tundra fire near Inuvik, N.W.T., Canada. Arct. Alp. Res. 27:323–335.CrossRefGoogle Scholar
  16. Michalek, J.L., N.H.F. French, E.S. Kasischke, R.D. Johnson, and J.E. Colwell. 1999. Using Landsat TM data to estimate carbon release from burned biomass in an Alaskan spruce forest complex. Int. J. Remote Sens. (in press).Google Scholar
  17. Myneni, R.B., C.D. Keeling, C.J. Tucker, G. Asrar, and R.R. Nemani. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702.CrossRefGoogle Scholar
  18. Nichols, H. 1969. The late quarternary history of vegetation and climate at Porcupine Mountain and Clearwater Bog, Manitoba. Arct. Alp. Res. 1:155–167.CrossRefGoogle Scholar
  19. O’Neill, K.P., E.S. Kasischke, D.D. Richter, and V. Krasovic. 1997. Effects of fire on temperature, moisture, and CO2 emissions from Tok, Alaska an initial assessment, pp. 295–303 in I.K. Iskandar, E.A. Wright, J.K. Radke, B.S. Sharratt, P.H. Groenevelt, and L.D. Hinzman, eds. International Symposium on Physics, Chemistry, and Ecology of Seasonally Frozen Soils. June 10–12, 1997, University of Alaska Fairbanks, Alaska. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.Google Scholar
  20. Ritchie, J.C., and F.K. Hare. 1971. Late-quarternary vegetation and climate near the arctic treeline of northwestern North America. Quat. Res. 1:331–342.CrossRefGoogle Scholar
  21. Schlentner, R.E., and K. Van Cleve. 1985. Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can. J. For. Res. 15:97–106.CrossRefGoogle Scholar
  22. Slaughter, C.W., and L.A. Viereck. 1986. Climatic characteristics of the taiga in Interior Alaska, pp. 9–21 in K. Van Cleve, F.S. Chapin III, P.W. Flanagan, L.A. Viereck, and C.T. Dyrness, eds. Forest Ecosystems in the Alaskan Taiga. Ecological Studies 57. Springer-Verlag, New York.CrossRefGoogle Scholar
  23. Swanson, D.K. 1996. Susceptibility of permafrost soils to deep thaw after forest fires in interior Alaska, U.S.A., and some ecological implications. Arct. Alp. Res. 28:217–227.CrossRefGoogle Scholar
  24. Tarnocai, C., and S.C. Zoltai. 1978. Earth hummocks of the Canadian Arctic and subarctic. Arct. Alp. Res. 10:581–594.CrossRefGoogle Scholar
  25. Van Cleve, K., and L. Viereck. 1981. Forest succession in relation to nutrient cycling in the boreal forest of Alaska, pp. 184–211 in D.C. West, H.H. Shugart, and D.B. Botkin, eds. Forest Succession: Concepts and Application. Springer-Verlag, New York.Google Scholar
  26. Van Cleve, K., C.T. Dyrness, L.A. Viereck, J. Fox, F.S. Chapin III and W. Oechel. 1983a. Taiga ecosystems in interior Alaska. Bioscience 33:39–44.CrossRefGoogle Scholar
  27. Van Cleve, K., L. Oliver, R. Schlentner, L.A. Viereck, and C.T. Dyrness. 1983b. Productivity and nutrient cycling in taiga forest ecosystems. Can. J. For Res. 13:747–766.CrossRefGoogle Scholar
  28. Van Cleve, K., F.S. Chapin, III, P.W. Flanagan, L.A. Viereck, and C.T. Dyrness, eds. 1986. Forest Ecosystems in the Alaskan Taiga. Ecological Studies 57. Springer-Verlag, New York.Google Scholar
  29. Viereck, L.A. 1982. Effects of fire and fire lines on active layer thickness and soil temperatures in interior Alaska, pp. 123–135 in H.M. French, ed. Proceedings of the Fourth Canadian Permafrost Conference. National Research Council of Canada, Ottawa, Ontario, Canada.Google Scholar
  30. Viereck, L.A. 1983. The effects of fire in black spruce ecosystems in Alaska and northern Canada, pp. 201–220 in R.W. Wein and D.A. MacLean, eds. The Role of Fire in Northern Circumpolar Ecosystems. John Wiley &; Sons, New York.Google Scholar
  31. Viereck, L.A., C.T. Dyrness, K. Van Cleve, and M.J. Foote. 1983. Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Can. J. For Res. 13:703–720.CrossRefGoogle Scholar
  32. Viereck, L.A., K. Van Cleve, and C.T. Dyrness. 1986. Forest ecosystem distribution in the taiga environment, pp. 23–43 in K. Van Cleve, F.S. Chapin III, P.W. Flanagan, L.A. Viereck, and C.T. Dyrness, eds. Forest Ecosystems in the Alaskan Taiga. Ecological Studies 57. Springer-Verlag, New York.Google Scholar
  33. Viereck, L.A., C.T. Dyrness, and M.J. Foote. 1993. An overview ofthe vegetation and soils of the floodplain ecosystems of the Tanana River, interior Alaska. Can. J. For Res. 23:889–898.CrossRefGoogle Scholar
  34. Wotton, B.M., and M.D. Flannigan. 1993. Length of the fire season in a changing climate. For. Chron. 69:187–192.Google Scholar
  35. Yarie, J. 1983. Forest Community Classification of the Porcupine River Drainage, Interior Alaska, and Its Application to Forest Management. U.S. Forest Service Technical Renort PNW-154. U.S. Denartment of Agriculture. Portland, Oregon.Google Scholar
  36. Zoltai, S.C., and W.W. Pettapiece. 1974. Tree distribution on perenially frozen earth hummocks. Arct. Alp. Res. 6:403–411.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2000

Authors and Affiliations

  • Eric S. Kasischke
  • Nancy H. F. French
  • Katherine P. O’Neill
  • Daniel D. Richter
  • Laura L. Bourgeau-Chavez
  • Peter A. Harrell

There are no affiliations available

Personalised recommendations