Controls on Patterns of Biomass Burning in Alaskan Boreal Forests

  • Eric S. Kasischke
  • Katherine P. O’Neill
  • Nancy H. F. French
  • Laura L. Bourgeau-Chavez
Part of the Ecological Studies book series (ECOLSTUD, volume 138)


As discussed in the introduction to this section, fire serves an important ecological role in the boreal forest, especially in those processes controlling the exchange of carbon dioxide and other greenhouse gases with the atmosphere. One of the key requirements for quantifying the effects of fire on the carbon cycle in boreal forests is estimating the amount of biomass consumed during fire.


Forest Type Boreal Forest Organic Soil Biomass Burning Ground Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agriculture Canada Expert Committee on Soil Survey. 1987. The Canadian System of Soil Classification. Canadian Government Publishing Centre, Ottawa, Canada.Google Scholar
  2. Alexander, M.E., and D. Quintillo. 1990. Perspectives on experimental fires in Canadian forestry research. Math. Comput. Model. 13:17–26.CrossRefGoogle Scholar
  3. Alexander, M.E., B.J. Stocks, and B.D. Lawson. 1991. Fire Behavior in Black Spruce— Lichen Woodland: The Porter Lake Project. Northwest Region Information Report NOR-X-310. Canadian Forest Service, Yellowknife, NWT, Canada.Google Scholar
  4. Atkins, T.L. 1995. Carbon release from a wildfire in the Alaskan taiga. M.S. thesis, University of Virginia, Charlottesville, VA.Google Scholar
  5. Auclair, A.N.D. 1985. Postfire regeneration of plant and soil organic pools in a Picea mariana—Cladonia stellaris ecosystem. Can. J For. Res. 15:279–291.CrossRefGoogle Scholar
  6. Barney, R.J., K. Van Cleve, and R. Schlentner. 1978. Biomass distribution and crown characteristics in two Alaskan Picea mariana ecosystems. Can J For Res. 8:36–41.CrossRefGoogle Scholar
  7. Bourgeau-Chavez, L.L., P.A. Harrell, E.S. Kasischke, and N.H.F. French. 1997. The detection and mapping of Alaskan wildfires using a spaceborne imaging radar system. Int. J. Remote Sens. 18:355–373.CrossRefGoogle Scholar
  8. Buol, S.W., F.D. Hole, and R.J. McCracken. 1989. Soil Genesis and Classification, 3rd ed. Iowa State University Press, Ames, IA.Google Scholar
  9. Cahoon, D.R., Jr., B.J. Stocks, J.S. Levine, W.R. Cofer III, and J.M. Pierson. 1994. Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. J. Geophys. Res. 99:18,627–18,638.Google Scholar
  10. Dyrness, C.T., and R.A. Norum. 1983. The effects of experimental fires on black spruce forest floors in interior Alaska. Can J. For Res. 13:879–893.CrossRefGoogle Scholar
  11. French, N.H.F., E.S. Kasischke, L.L. Bourgeau-Chavez, P.A. Harrell, and N.L. Christensen, Jr. 1996. Monitoring variations in soil moisture on fire disturbed sites in Alaska using ERS-1 SAR imagery. Int. J. Remote Sens. 17:3037–3053.CrossRefGoogle Scholar
  12. Harden, J.W., K.P. O’Neill, S.E. Trumbore, H. Veldhuis, and B.J. Stocks. 1997. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest. J. Geophys. Res. 102:28,805–28,816.Google Scholar
  13. Harrell, P.A., L.L. Bourgeau-Chavez, E.S. Kasischke, N.H.F. French, and N.L. Christensen. 1995. Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest. Remote Sens. Environ. 54:247–260.CrossRefGoogle Scholar
  14. Kasischke, E.S., and N.H.F. French. 1997. Natural limits on using AVHRR imagery to map patterns of vegetation cover in boreal forest regions. Int. J. Remote Sens. 18:2403–2426.CrossRefGoogle Scholar
  15. Kasischke, E.S., N.H.F. French, L.L. Bourgeau-Chavez, and N.L. Christensen, Jr. 1995. Estimating release of carbon from 1990 and 1991 forest fires in Alaska. J. Geophys. Res. 100:2941–2951.CrossRefGoogle Scholar
  16. Mann, D.H., C.L. Fastie, E.L. Rowland, and N.H. Bigelow. 1995. Spruce succession, disturbance, and geomorphology on the Tanana River floodplain, Alaska. Ecoscience 2:184–195.Google Scholar
  17. Peterson, E.B., Y.H. Chan, and J.B. Cragg. 1970. Aboveground standing crop and caloric value in an aspen clone near Calgary, Alberta. Can. J. Bot. 48:1459–1469.CrossRefGoogle Scholar
  18. Quintillo, D., M.E. Alexander, and R.L. Ponto. 1991. Spring fires in a semimature trembling aspen stand in central Alberta. Northwest Region Information Report NOR-X-323. Canadian Forest Service, Yellowknife, NWT, Canada.Google Scholar
  19. Stocks, B.J. 1980. Black spruce crown fuel weights in northern Ontario. Can J. For. Res. 10:498–501.CrossRefGoogle Scholar
  20. Stocks, B.J. 1987. Fire behavior in immature jack pine. Can J. For. Res. 17:80–86.CrossRefGoogle Scholar
  21. Stocks, B.J. 1989. Fire behavior in mature jack pine. Can J. For Res. 19:783–790.CrossRefGoogle Scholar
  22. Stocks, B.J. 1991. The extent and impact of forest fires in northern circumpolar countries, pp. 197–202 in J.S. Levine, ed. Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications. MIT Press, Cambridge, MA.Google Scholar
  23. Stocks, B.J., and J.B. Kauffman. 1997. Biomass consumption and behavior of wildland fires in boreal, temperate, and tropical ecosystems: parameters necessary to interpret historic fire regimes and future fire scenarios, pp. 169–188 in J.S. Clark, H. Cachier, J.G. Goldammer, and B.J. Stocks, eds. Sediment Records of Biomass Burning and Global Change. NATO ASI Series, Subseries 1, Global Environmental Change, Vol. 51, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  24. Stocks, B.J., B.D. Lawson, M.E. Alexander, C.E. Van Wagner, R.S. McAlpine, T.J. Lynham, and D.E. Dube. 1989. The Canadian forest fire danger rating system: an overview. For. Chron. 65:258–265.Google Scholar
  25. Susott, R.A., D.E. Ward, R.E. Babbitt, and D.J. Latham. 1991. The measurement of trace gas emissions and combustion characteristics for a mass fire, pp. 245–257 in J.S. Levine, ed. Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications. MIT Press, Cambridge, MA.Google Scholar
  26. Telfer, E.S. 1969. Weight-diameter relationships for 22 woody plant species. Can J. Bot. 47:1851–1855.CrossRefGoogle Scholar
  27. Van Cleve, K., L. Oliver, R. Schlentner, L.A. Viereck, and C.T. Dyrness. 1983. Productivity and nutrient cycling in taiga forest ecosystems. Can J. For. Res. 13:747–766.CrossRefGoogle Scholar
  28. Yarie, J., and K. Van Cleve. 1983. Biomass and productivity of white spruce stands in interior Alaska. Can J. For. Res. 13:767–772.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2000

Authors and Affiliations

  • Eric S. Kasischke
  • Katherine P. O’Neill
  • Nancy H. F. French
  • Laura L. Bourgeau-Chavez

There are no affiliations available

Personalised recommendations