Advertisement

Phylum BVIII. Nitrospirae phy. nov.

  • George M. Garrity
  • John G. Holt
  • Eva Spieck
  • Eberhard Bock
  • D. Barrie Johnson
  • Stefan Spring
  • Karl-Heinz Schleifer
  • James S. Maki
Chapter

Abstract

The phylum Nitrospirae is based mainly on phylogenetic grounds. At present, it consists of a single class, order, and family of Bacteria and environtaxa that branch deeply in the major reference trees; member taxa consistently group together. Gram-negative, curved, vibrioid or spiral-shaped cells. Metabolically diverse, most genera are aerobic chemolithotrophs including nitrifiers, dissimilatory sulfate reducers, and magnetotactic forms. One genus (Thermodesulfovibrio) is thermophilic, and obligately acidophilic and anaerobic.

Keywords

Ferrous Iron Ferrous Sulfate Nitrite Oxidizer Specific Oligonucleotide Probe Single Polar Flagellum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Bartosch, S., I. Wolgast, E. Spieck and E. Bock. 1999. Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase. Appl. Environ. Microbiol. 65: 4126–4133.PubMedCentralPubMedGoogle Scholar
  2. Ehrich, S., D. Behrens, E. Lebedeva, W. Ludwig and E. Bock. 1995. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch. Microbiol. 164: 16–23.PubMedCrossRefGoogle Scholar
  3. Juretschko, S., G. Timmermann, M. Schmid, K.H. Schleifer, A. Pommerening-Rser, H.P. Koops and M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042–3051.PubMedCentralPubMedGoogle Scholar
  4. Spieck, E., S. Ehrich, J. Aamand and E. Bock. 1998. Isolation and immunocytochemical location of the nitrite-oxidizing system in Nitrospira moscoviensis. Arch. Microbiol. 169: 225–230.PubMedCrossRefGoogle Scholar
  5. Watson, S.W., E. Bock, H. Harms, H.P. Koops and A.B. Hooper. 1989. Nitrifying bacteria. In Staley, Bryant, Pfennig and Holt (Editors), Begey’s Manual of Systematic Bacteriology, 1st ed., Vol. 3, The Williams Wilkins Co., Baltimore, pp. 1808–1834.Google Scholar
  6. Watson, S.W., E. Bock, F.W. Valois, J.B. Waterbury and U. Schlosser. 1986. Nitrospira marina, gen. nov. sp. nov.: a chemolithotrophic nitrite-oxi-dizing bacterium. Arch. Microbiol. 144: 1–7.CrossRefGoogle Scholar
  7. De Wulf-Durand, P., LT Bryant and L.I. Sly. 1997. PCR-mediated detection of acidophilic, bioleaching-associated bacteria. Appl. Environ. Microbiol. 63: 2944–2948.PubMedCentralPubMedGoogle Scholar
  8. Edwards, K.J., T.M. Gihring and J.F. Banfield. 1999. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl. Environ. Microbiol. 65: 3627–3632.PubMedCentralPubMedGoogle Scholar
  9. Goebel, B.M., and E. Stackebrandt. 1995. Molecular analysis of the microbial biodiversity in a natural acidic environment. In Jerez, Vargas, Toledo and Weirtz (Editors), Biohydrometallurgical Processing II, University of Chile, Santiago, pp. 43–52.Google Scholar
  10. Golovacheva, R.S., O.V. Golyshina, G.I. Karavaiko, A.G. Dorofeev, T.A. Pivovarova and N.A. Chernykh. 1992. A new iron-oxidizing bacterium, Leptospirillum thermoferrooxidans sp. nov. Mikrobiologiya 61: 1056–1065.Google Scholar
  11. Hippe, H. 2000. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992 ). Int. J. Syst. Evol. Microbiol. 50: 501–503.CrossRefGoogle Scholar
  12. Johnson, D.B. 1995. Selective solid media for isolating and enumerating acidophilic bacteria. J. Microbiol. Methods 23: 205–218.CrossRefGoogle Scholar
  13. Lane, DJ., A.P. Harrison, Jr., D. Stahl, B. Pace, S J. Giovannoni, G.J. Olsen and N.R. Pace. 1992. Evolutionary relationships among sulfur-and iron-oxidizing eubacteria. J. Bacteriol. 174: 269–278.PubMedCentralPubMedGoogle Scholar
  14. Markosyan, G.E. 1972. A new iron-oxidizing bacterium, Leptospirillum ferrooxidans gen. et sp. nov.. Biol. Zh. Arm. 25: 26.Google Scholar
  15. Pivovarova, T.A., G.E. Markosyan and G.I. Karavaiko. 1981. Morphogenesis and fine structure of Leptospirillum ferrooxidans. Mikrobiologiya 50: 482–486.Google Scholar
  16. Rawlings, D.E., H. Tributsch and G.S. Hansford. 1999. Reasons why “Leptospirillum”-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145: 5–13.PubMedCrossRefGoogle Scholar
  17. Henry, E.A., R. Devereux, J.S. Maki, C.C. Gilmour, C.R. Woese, L. Man-delco, R. Schauder, C.C. Remsen and R. Mitchell. 1994. Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within dense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two therthe bacterial domain. Arch. Microbiol. 161: 62–69. mophilic sulfate reducing bacteria isolated from a Icelandic hotPubMedCrossRefGoogle Scholar
  18. Sonne-Hansen, J. and B.K. Ahring. 1999. Thermodesulfobacterium hverager spring. Syst. Appl. Microbiol. 22: 559–564.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • George M. Garrity
  • John G. Holt
  • Eva Spieck
  • Eberhard Bock
  • D. Barrie Johnson
  • Stefan Spring
  • Karl-Heinz Schleifer
  • James S. Maki

There are no affiliations available

Personalised recommendations