Mitochondrial Oscillations in Physiology and Pathophysiology

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 641)

Abstract

Oscillations in chemical reactions and metabolic pathways have historiacally served as prototypes for understanding the dynamics of complex nonlinear systems. This chapter reviews the oscillatory behavior of mitochondria, with a focus on the mitochondrial oscillator dependent on reactive oxygen species (ROS), as first described in heart cells. Experimental and theoretical evidence now indicates that mitochondrial energetic variables oscillate autonomously as part of a network of coupled oscillators under both physiological and pathological conditions. The physiological domain is characterized by small-amplitude oscillations in mitochondrial membrane potential (ΔΨm) showing correlated behavior over a wide range of frequencies, as determined using Power Spectral Analysis and Relative Dispersion Analysis of long term recordings of ΔΨm. Under metabolic stress, when the balance between ROS generation and ROS scavenging is perturbed, the mitochondrial network throughout the cell locks to one main low-frequency, high-amplitude oscillatory mode. This behavior has major pathological implications because the energy dissipation and cellular redox changes that occur during ΔΨm depolarization result in suppression of electrical excitability and Ca2+ handling, the two main functions of the cardiac cell. In an ischemia/reperfusion scenario these alterations scale up to the level of the whole organ, giving rise to fatal arrhythmias.

References

  1. 1.
    Strogatz SH, Sync. The Emerging Science of Spontaneous Order. New York: Hyperion Books, 2003.Google Scholar
  2. 2.
    Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Vol. 29. Cambridge: Cambridge University Press, 2001.Google Scholar
  3. 3.
    van der Pol B, van der Mark J. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil Mag 1928; 6:763–775.Google Scholar
  4. 4.
    Hess B, Boiteux A. Oscillatory phenomena in biochemistry. Annu Rev Biochem 1971; 40:237–258.PubMedCrossRefGoogle Scholar
  5. 5.
    Rapp PE. An atlas of cellular oscillators. J Exp Biol 1979; 81:281–306.PubMedGoogle Scholar
  6. 6.
    Berridge MJ, Rapp PE. A comparative survey of the function, mechanism and control of cellular oscillators. J Exp Biol 1979; 81:217–279.PubMedGoogle Scholar
  7. 7.
    Lloyd D, Aon MA, Cortassa S. Why homeodynamics, not homeostasis? Scientific World Journal 2001; 1:133–145.PubMedGoogle Scholar
  8. 8.
    Winfree AT. The prehistory of the Belousov-Zhabotinsky oscillator. J Chem Educ 1984; 61:661–663.CrossRefGoogle Scholar
  9. 9.
    Zhabotinky AM. Periodic course of the oxidation of malonic acid in a solution (Studies on the kinetics of beolusov’s reaction). Biofizika 1964; 9:306–311.Google Scholar
  10. 10.
    Duysens LN, Amesz J. Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim Biophys Acta 1957; 24(1):19–26.PubMedCrossRefGoogle Scholar
  11. 11.
    Chance B, Estabrook RW, Ghosh A. Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc Natl Acad Sci USA 1964; 51:1244–1251.PubMedCrossRefGoogle Scholar
  12. 12.
    Hommes FA, Schuurmansstekhoven FM. Aperiodic changes of reduced nicotinamide-adenine dinucleotide during anaerobic glycolysis in brewer’s yeast. Biochim Biophys Acta 1964; 86:427–428.PubMedGoogle Scholar
  13. 13.
    Chance B, Schoener B, Elsaesser S. Control of the waveform oscillations of the reduced pyridine nucleotide level in a cell-free extract. Proc Natl Acad Sci USA 1964: 52:337–341.PubMedCrossRefGoogle Scholar
  14. 14.
    Chance B, Schoener B, Elsaesser S. Metabolic control phenomena involved in damped sinusoidal oscillations of reduced diphosphopyridine nucleotide in a cell-free extract of saccharomyces carlsbergensis. J Biol Chem 1965; 240:3170–3181.PubMedGoogle Scholar
  15. 15.
    Frenkel R. DPNH oscillations in glycolyzing cell free extracts from beef heart. Biochem Biophys Res Commun 1965; 21(5):497–502.PubMedCrossRefGoogle Scholar
  16. 16.
    Frenkel R. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. II. Oscillations of glycolytic intermediates and adenine nucleotides. Arch Biochem Biophys 1968; 125(1):157–165.PubMedCrossRefGoogle Scholar
  17. 17.
    Frenkel R. Control of reduced diphosphopyridine nucleotide oscillations in beef extracts. I. Effects of modifiers of phosphofructokinase activity. Arch Biochem Biophys 1968; 125(1):151–156.PubMedCrossRefGoogle Scholar
  18. 18.
    Frenkel R. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. III. Purification and kinetics of beef heart phosphofructokinase. Arch Biochem Biophys 1968; 125(1):166–174.PubMedCrossRefGoogle Scholar
  19. 19.
    Chance B. Federation of european biochemical societies: Biological and biochemical oscillators. New York: Academic Press 1973, (proceedings).Google Scholar
  20. 20.
    Lloyd D, Murray DB. The temporal architecture of eukaryotic growth. FEBS Lett 2006; 580(12):2830–2835.PubMedCrossRefGoogle Scholar
  21. 21.
    Richard P. The rhythm of yeast. FEMS Microbiol Rev 2003; 27(4):547–557.PubMedCrossRefGoogle Scholar
  22. 22.
    Madsen MF, Dano S, Sorensen PG. On the mechanisms of glycolytic oscillations in yeast. FEBS J 2005; 272(11):2648–2660.PubMedCrossRefGoogle Scholar
  23. 23.
    Azzi A, Azzone GF. Swelling and shrinkage phenomena in liver mitochondria. II. Low amplitude swelling-shrinkage cycles. Biochim Biophys Acta 1965; 105(2):265–278.PubMedGoogle Scholar
  24. 24.
    Mustafa MG, Utsumi K, Packer L. Damped oscillatory control of mitochondrial respiration and volume. Biochem Biophys Res Commun 1966; 24(3):381–385.PubMedCrossRefGoogle Scholar
  25. 25.
    Packer L, Utsumi R, Mustafa MG. Oscillatory states of mitochondria. I. Electron and energy transfer pathways. Arch Biochem Biophys 1966; 117(2):381–393.PubMedCrossRefGoogle Scholar
  26. 26.
    Chance B, Yoshioka T. Sustained oscillations of ionic constituents of mitochondria. Arch Biochem Biophys 1966; 117:451–465.PubMedCrossRefGoogle Scholar
  27. 27.
    Evtodienko YV. Sustained oscillations of transmembrane Ca2+ fluxes in mitochondria and their possible biological significance. Membr, Cell Biol 2000; 14:1–17.Google Scholar
  28. 28.
    Gylkhandanyan AV, Evtodienko YV, Zhabotinsky AM et al. Continuous Sr2+-induced oscillations of the ionic fluxes in mitochondria. FEBS Lett 1976; 66(1):44–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Maglova LM, Holmuhamedov EL, Zinchenko VP et al. Induction of 2H+/Me2+ exchange in rat-liver mitochondria. Eur J Biochem 1982; 128(1):159–161.PubMedCrossRefGoogle Scholar
  30. 30.
    Selivanov VA, Ichas F, Holmuhamedov EL et al. A model of mitochondrial Ca(2+)-induced Ca2+ release simulating the Ca2+ oscillations and spikes generated by mitochondria. Biophys Chem 1998; 72(1–2):111–121.PubMedCrossRefGoogle Scholar
  31. 31.
    Gooch VD, Packer L. Adenine nucleotide control of heart mitochondrial oscillations. Biochim Biophys Acta 1971; 245(1):17–20.PubMedCrossRefGoogle Scholar
  32. 32.
    Gooch VD, Packer L. Oscillatory systems in mitochondria. Biochim Biophys Acta 1974; 346(3–4):245–260.PubMedGoogle Scholar
  33. 33.
    Gooch VD, Packer L. Oscillatory states of mitochondria: Studies on the oscillatory mechanism of liver and heart mitochondria. Arch Biochem Biophys 1974; 163(2):759–768.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Rourke B, Ramza BM, Marban E. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 1994; 265(5174):962–966.PubMedCrossRefGoogle Scholar
  35. 35.
    Romashko DN, Marban E, O’Rourke B., Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc Natl Acad Sci USA 1998; 95(4):1618–1623.PubMedCrossRefGoogle Scholar
  36. 36.
    Aon MA, Cortassa S, Marban E et al. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 2003; 278(45):44735–44744.PubMedCrossRefGoogle Scholar
  37. 37.
    Kim YV, Kudzina L, Zinchenko VP et al. Clortetracyline-mediated continuous Ca2+ oscillations in mitochondria of digitonin-treated Tetrahymena pyriformis. Eur J Biochem 1985; 153(3):503–507.PubMedCrossRefGoogle Scholar
  38. 38.
    Evtodienko Yu V, Teplova V, Khawaja J et al. The Ca(2+)-induced permeability transition pore is involved in Ca(2+)-induced mitochondrial oscillations: A study on permeabilised Ehrlich ascites tumour cells. Cell Calcium 1994; 15(2):143–152.PubMedCrossRefGoogle Scholar
  39. 39.
    Hajnoczky G, Robb-Gaspers LD, Seitz MB et al. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 1995; 82(3):415–424.PubMedCrossRefGoogle Scholar
  40. 40.
    Magnus G, Keizer J. Model of beta-cell mitochondrial calcium handling and electrical activity. II. Mitochondrial variables. Am J Physiol 1998; 27(4 Pt 1):C1174–1184.Google Scholar
  41. 41.
    Pedersen MG, Bertram R, Sherman A. Intra-an inter-islet synchronization of metabolically driven insulin secretion. Biophys J 2005; 89(1):107–119.PubMedCrossRefGoogle Scholar
  42. 42.
    Corkey BE, Tornheim K, Deeney JT et al. Linked oscillations of free Ca2+ and the ATP/ADP ratio in permeabilized RINm 5F insulinoma cells supplemented with a glycolyzing cell-free muscle extract. J Biol Chem 1988; 263(9):4254–4258.PubMedGoogle Scholar
  43. 43.
    Lloyd D. Effects of uncoupling of mitochondrial energy conservation on the ultradian clock-driven oscillations in Saccharomyces cerevisiae continuous culture. Mitochondrion 2003; 3(3): 139–136.PubMedCrossRefGoogle Scholar
  44. 44.
    Mironov SL, Richter DW. Oscillations and hypoxic changes of mitochondrial variables in neurons of the brainstem respiratory centre of mice. J Physiol 2001; 533(Pt 1):227–236.PubMedCrossRefGoogle Scholar
  45. 45.
    Berns MW, Siemens AE, Walter RJ. Mitochondrial fluorescence patterns in rhodamine 6G-stained myocardial cells in vitro: Analysis by real-time computer video microscopy and laser microspot excitation. Cell Biophys 1984; 6(4):263–277.PubMedGoogle Scholar
  46. 46.
    Duchen MR, Leyssens A, Crompton M. Transient mitochondrial depolarizations reflect focal sarcoplasmic reticular calcium release in single rat cardiomyocytes. J Cell Biol 1998; 142(4): 975–988.PubMedCrossRefGoogle Scholar
  47. 46.
    Loew LM, Tuft RA, Carrington W et al. Imaging in five dimensions: Time-dependent membrane potentials in individual mitochondria. Biophys J 1993; 65(6): 2396–2407.PubMedGoogle Scholar
  48. 48.
    Buckman JF, Reynolds IJ. Spontaneous changes in mitochondrial membrane potential in cultured neurons. J Neurosci 2001; 21(14):5054–5065.PubMedGoogle Scholar
  49. 49.
    O’Reilly CM, Fogarty KE, Drummond RM et al. Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys J 2003; 85(5):3350–3357.PubMedGoogle Scholar
  50. 50.
    O’Reilly CM, Fogarty KE, Drummond RM et al. Spontaneous mitochondrial depolarizations are independent of SR Ca2+ release. Am J Physiol Cell Physiol 2004; 286(5):C1139–1151.PubMedCrossRefGoogle Scholar
  51. 51.
    Huser J, Rechenmacher, CE, Blatter LA. Imaging the permeability pore transition in single mitochondria. Biophys J 1998; 74(4):2129–2137.PubMedGoogle Scholar
  52. 52.
    Huser J, Blatter LA. Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochem J 1999; 343(Pt 2):311–317.PubMedCrossRefGoogle Scholar
  53. 53.
    Vergun O, Votyakova TV, Reynolds IJ. Spontaneous changes in mitochondrial membrane potential in single isolated brain mitochondria. Biophys J 2003; 85(5):3358–3366.PubMedCrossRefGoogle Scholar
  54. 54.
    Vergun O, Reynolds IJ. Fluctuations in mitochondrial membrane potential in single isolated brain mitochondria: Modulation by adenine nucleotides and Ca2+. Biophys J 2004; 87(5):3585–3593.PubMedCrossRefGoogle Scholar
  55. 55.
    Ichas F, Jouaville LS, Sidash SS et al. Mitochondrial calcium spiking: A transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling. FEBS Lett 1994; 348(2):211–215.PubMedCrossRefGoogle Scholar
  56. 56.
    Zorov DB, Filburn CR, Klotz LO et al. Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 2000; 192(7):1001–1014.PubMedCrossRefGoogle Scholar
  57. 57.
    Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: An update and review. Biochim Biophys Acta 2006; 1757(5–6):509–517.PubMedGoogle Scholar
  58. 58.
    O’Rourke B. Pathophysiological and protective roles of mitochondrial ion channels. J Physiol 2000; 529(Pt 1):23–36.PubMedCrossRefGoogle Scholar
  59. 59.
    O’Rourke B, Ramza BM, Romashko DN et al. Metabolic oscillations in heart cells. Adv Exp Med Biol 1995; 382:165–174.PubMedGoogle Scholar
  60. 60.
    Cortassa S, Aon MA, Winslow RL et al. A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 2004; 87(3):2060–2073.PubMedCrossRefGoogle Scholar
  61. 61.
    Crompton M, Virji S, Doyle V et al. The mitochondrial permeability transition pore. Biochem Soc Symp 1999; 66:167–179.PubMedGoogle Scholar
  62. 62.
    Duchen MR. Contributions of mitochondria to animal physiology: From homeostatic sensor to calcium signalling and cell death. J Physiol 1999; 516 (Pt 1):1–17.PubMedCrossRefGoogle Scholar
  63. 63.
    Beavis AD. On the inhibition of the mitochondrial inner membrane anion uniporter by cationic amphiphiles and other drugs. J Biol Chem 1989; 264(3):1508–1515.PubMedGoogle Scholar
  64. 64.
    Beavis AD. Properties of the inner membrane anion channel in intact mitochondria. J Bioenerg Biomembr 1992; 24(1):77–90.PubMedCrossRefGoogle Scholar
  65. 65.
    Beavis AD, Garlid KD. The mitochondrial inner membrane anion channel: Regulation by divalent cations and protons. J Biol Chem 1987; 262(31):15085–15093.PubMedGoogle Scholar
  66. 66.
    Aon MA, Cortassa S, O’Rourke B. The fundamental organization of cardiac mitochondria as a network of coupled oscillators. Biophys J 2006b; 91(11):4317–4327.PubMedCrossRefGoogle Scholar
  67. 67.
    Stauffer D, Aharony A. Introduction to Percolation Theory. London: Taylor and Francis, 1994.Google Scholar
  68. 68.
    Feder J. Fractals. New York: Plenum Press, 1988.Google Scholar
  69. 69.
    Aon MA, O’Rourke B, Cortassa S. The fractal architecture of cytoplasmic organization: Scaling, kinetics and emergence in metabolic networks. Mol Cell Biochem 2004b; 256/257:169–184.CrossRefGoogle Scholar
  70. 70.
    Akar FG, Aon MA, Tomaselli GF et al. The mitochondrial origin of postischemic arrhythmias. J Clin Invest 2005; 115(12):3527–3535.PubMedCrossRefGoogle Scholar
  71. 71.
    Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 1999; 79(2):609–634.PubMedGoogle Scholar
  72. 72.
    Kleber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 2004; 84(2):431–488.PubMedCrossRefGoogle Scholar
  73. 73.
    Cortassa S, Aon MA, Marban E et al. An integrated, model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 2003; 84(4):2734–2755.PubMedGoogle Scholar
  74. 74.
    O’Rourke B, Cortassa S, Aon MA. Mitochondrial ion channels: Gatekeepers of life and death. Physiology 2005; 20:303–315.PubMedCrossRefGoogle Scholar
  75. 75.
    Aon MA, Cortassa S, Akar FG et al. Mitochondrial criticality: A new concept at the turning point of life or death. Biochim Biophys Acta 2006; 1762(2):232–240.PubMedGoogle Scholar
  76. 76.
    Aon MA, Cortassa S, O’Rourke B. Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci USA 2004a; 101(13):4447–4452.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Miguel A. Aon
    • 1
  • Sonia Cortassa
    • 1
  • Brian O’Rourke
    • 1
  1. 1.Division of Cardiology Institute of Molecular CardiobiologyThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Institute of Molecular CardiologyThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations