Evolutionary Phylogenetic Networks: Models and Issues

Chapter

Abstract

Phylogenetic networks are special graphs that generalize phylogenetic trees to allow for modeling of non-treelike evolutionary histories. The ability to sequence multiple genetic markers from a set of organisms and the conflicting evolutionary signals that these markers provide in many cases, have propelled research and interest in phylogenetic networks to the forefront in computational phylogenetics. Nonetheless, the term ‘phylogenetic network‘ has been generically used to refer to a class of models whose core shared property is tree generalization. Several excellent surveys of the different flavors of phylogenetic networks and methods for their reconstruction have been written recently. However, unlike these surveys, this chapte focuses specifically on one type of phylogenetic networks, namely evolutionary phylogenetic networks, which explicitly model reticulate evolutionary events. Further, this chapter focuses less on surveying existing tools, and addresses in more detail issues that are central to the accurate reconstruction of phylogenetic networks.

Keywords

Gene Tree Horizontal Gene Transfer Phylogenetic Network Much Recent Common Ancestor Reticulate Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Annals of Combinatorics 5, 1–13 (2001)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baroni, M., Grunewald, S., Moulton, V., Semple, C.: Bounding the number of hybridization events for a consistent evolutionary history. J. Math. Biol. 51, 171–182 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baroni, M., Semple, C., Steel, M.: A framework for representing reticulate evolution. Annals of Combinatorics 8(4), 391–408 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Beiko, R., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events. BMC Evolutionary Biology 6 (2006)CrossRefGoogle Scholar
  5. 5.
    Bergthorsson, U., Adams, K., Thomason, B., Palmer, J.: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424, 197–201 (2003)CrossRefGoogle Scholar
  6. 6.
    Bergthorsson, U., Richardson, A., Young, G., Goertzen, L., Palmer, J.: Massive horizontal transfer of mitochondrial genes from diverse land plant donors to basal angiosperm Amborella. Proc. Nat’l Acad. Sci., USA 101, 17,747–17,752 (2004)Google Scholar
  7. 7.
    Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics 8, 409–423 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: A distance metric for a class of treesibling phylogenetic networks. Bioinformatics 24(13), 1481–1488 (2008)CrossRefGoogle Scholar
  9. 9.
    Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic networks I: Generalizations of the robinson-foulds metric. IEEE/ACM Transactions on Computational Biology and Bioinformatics 6(1), 1–16 (2009)CrossRefGoogle Scholar
  10. 10.
    Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic networks II: Nodal and triplets metrics. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2009)Google Scholar
  11. 11.
    Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: On Nakhleh’s latest metric for phylogenetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2009). To appearGoogle Scholar
  12. 12.
    Cardona, G., Rosselló, F., Valiente, G.: Extended Newick: It is time for a standard representation of phylogenetic networks. BMC Bioinformatics 9, 532 (2008)CrossRefGoogle Scholar
  13. 13.
    Cardona, G., Rossello, F., Valiente, G.: A Perl package and an alignment tool for phylogenetic networks. BMC Bioinformatics 9(1), 175 (2008)CrossRefGoogle Scholar
  14. 14.
    Cardona, G., Rosselló, F., Valiente, G.: Tripartitions do not always discriminate phylogenetic networks. Mathematical Biosciences 211(2), 356–370 (2008)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Cardona, G., Rosselló, F., Valiente, G.: Comparison of tree-child phylogenetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2009). To appearGoogle Scholar
  16. 16.
    Chor, B., Tuller, T.: Maximum likelihood of evolutionary trees is hard. Proc. 9th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB05) pp. 296–310 (2005)Google Scholar
  17. 17.
    Darwin, C.: On the origin of species by means of natural selection. J.Murray, London (1859)Google Scholar
  18. 18.
    Day, W.: Computationally difficult parsimony problems in phylogenetic systematics. Journal of Theoretical Biology 103, 429–438 (1983)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Degnan, J., Rosenberg, N.: Discordance of species trees with their most likely gene trees. PLoS Genetics 2, 762–768 (2006)CrossRefGoogle Scholar
  20. 20.
    Doolittle, W.: Lateral genomics. Trends in Biochemical Sciences 24(12), M5–M8 (1999)CrossRefGoogle Scholar
  21. 21.
    Doolittle, W.: Phylogenetic classification and the universal tree. Science 284, 2124–2129 (1999)CrossRefGoogle Scholar
  22. 22.
    Edwards, S.: Is a new and general theory of molecular systematics emerging? Evolution 63(1), 1–19 (2009)CrossRefGoogle Scholar
  23. 23.
    Ellstrand, N., Whitkus, R., Rieseberg, L.: Distribution of spontaneous plant hybrids. Proc. Nat’l Acad. Sci., USA 93(10), 5090–5093 (1996)CrossRefGoogle Scholar
  24. 24.
    Estabrook, G., McMorris, F.: When are two qualitative taxonomic characters compatible? J. Math. Biosci. 4, 195–200 (1977)MATHMathSciNetGoogle Scholar
  25. 25.
    Ewens, W.: Mathematical Population Genetics. Springer-Verlag, Berlin (1979)MATHGoogle Scholar
  26. 26.
    Felsenstein, J.: Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27, 401–410 (1978)CrossRefGoogle Scholar
  27. 27.
    Felsenstein, J.: Alternative methods of phylogenetic inference and their interrelationship. Systematic Zoology 28, 49–62 (1979)CrossRefGoogle Scholar
  28. 28.
    Felsenstein, J.: Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)CrossRefGoogle Scholar
  29. 29.
    Fitch, W.: Toward defining the course of evolution: Minimum change for a specified tree topology. Syst. Zool. 20, 406–416 (1971)CrossRefGoogle Scholar
  30. 30.
    Foulds, L., Graham, R.: The Steiner problem in phylogeny is NP-complete. Adv. Appl.Math. 3, 43–49 (1982)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Gambette, P.: Who is who in phylogenetic networks: Articles, authors and programs. http://www.lirmm.fr/~gambette/PhylogeneticNetworks/
  32. 32.
    Gemeinholzer, B.: Phylogenetic networks. In: B.H. Junker, F. Schreiber (eds.) Analysis of Biological Networks, pp. 255–282. John Wiley and Sons Ltd (2008)Google Scholar
  33. 33.
    Goloboff, P.: Calculating SPR distances between trees. Cladistics 24, 591–597 (2007)CrossRefGoogle Scholar
  34. 34.
    Griffiths, R., Marjoram, P.: An ancestral recombination graph. In: P. Donnelly, S. Tavare (eds.) Progress in Population Genetics and Human Evolution, IMA Volumes in Mathematics and its Applications, vol. 87, pp. 257–270. Springer-Verlag, Berlin (1997)Google Scholar
  35. 35.
    Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Gusfield, D., Bansal, V., Bafna, V., Song, Y.: A decomposition theory for phylogenetic networks and incompatible characters. Journal of Computational Biology 14, 1247–1272 (2007)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proceedings of Computational Systems Bioinformatics (CSB 03) (2003)Google Scholar
  38. 38.
    Hallett, M., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: Proc. 5th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB01), pp. 149–156. ACMPress, New York (2001)Google Scholar
  39. 39.
    Hao, W., Golding, G.: Patterns of bacterial gene movement. Mol. Biol. Evol. 21(7), 1294–1307 (2004)CrossRefGoogle Scholar
  40. 40.
    Hein, J.: Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosciences 98, 185–200 (1990)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Hein, J.: A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol. 36, 396–405 (1993)CrossRefGoogle Scholar
  42. 42.
    Holder, M., Anderson, J., Holloway, A.: Difficulties in detecting hybridization. Systematic Biology 50(6), 978982 (2001)CrossRefGoogle Scholar
  43. 43.
    Holland, B., Benthin, S., Lockhart, P., Moulton, V., Huber, K.: Using supernetworks to distinguish hybridization from lineage-sorting. BMC Evolutionary Biology 8, 202 (2008)CrossRefGoogle Scholar
  44. 44.
    Hudson, R.: Properties of the neutral allele model with intergenic recombination. Theor. Popul. Biol. 23, 183–201 (1983)MATHCrossRefGoogle Scholar
  45. 45.
    Hudson, R., Kaplan, N.: Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111, 147–164 (1985)Google Scholar
  46. 46.
    Humphries, P., Semple, C.: Note on the hybridization number and subtree distance in phylogenetics. Applied Mathematics Letters (2009). In pressGoogle Scholar
  47. 47.
    Huson, D.H.: Split networks and reticulate networks. In: O. Gascuel, M. Steel (eds.) Reconstructing Evolution, New Mathematical and Computational Advances, pp. 247–276. Oxford University Press (2007)Google Scholar
  48. 48.
    Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(2), 254–267 (2006)CrossRefGoogle Scholar
  49. 49.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics 23, e123–e128 (2006). Proceedings of the European Conference on Computational Biology (ECCB 06)CrossRefGoogle Scholar
  50. 50.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks. Bioinformatics 22(21), 2604–2611 (2006)CrossRefGoogle Scholar
  51. 51.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Inferring phylogenetic networks by the maximum parsimony criterion: A case study. Molecular Biology and Evolution 24(1), 324–337 (2007)CrossRefGoogle Scholar
  52. 52.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: A new linear-time heuristic algorithm for computing the parsimony score of phylogenetic networks: Theoretical bounds and empirical performance. In: I. Mandoiu, A. Zelikovsky (eds.) Proceedings of the International Symposium on Bioinformatics Research and Applications, Lecture Notes in Bioinformatics, vol. 4463, pp. 61–72 (2007)Google Scholar
  53. 53.
    Kanj, I., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in the network is hard. Theoretical Computer Science 401, 153–164 (2008)MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Kanj, I., Nakhleh, L., Xia, G.: The compatibility of binary characters on phylogenetic networks: Complexity and parameterized algorithms. Algorithmica 51, 99–128 (2008)MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61, 893–903 (1969)Google Scholar
  56. 56.
    Kimura, M., Crow, J.: The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964)Google Scholar
  57. 57.
    Kingman, J.F.C.: The coalescent. Stochast. Proc. Appl. 13, 235–248 (1982)MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Kurland, C., Canback, B., Berg, O.: Horizontal gene transfer: A critical view. Proc. Nat’l Acad. Sci., USA 100(17), 9658–9662 (2003)CrossRefGoogle Scholar
  59. 59.
    Lathrop, G.: Evolutionary trees and admixture: Phylogenetic inference when some populations are hybridized. Ann. Hum. Genet. 46, 245–255 (1982)MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Linder, C., Rieseberg, L.: Reconstructing patterns of reticulate evolution in plants. American Journal of Botany 91, 1700–1708 (2004)CrossRefGoogle Scholar
  61. 61.
    Linder, C.R., Moret, B.M.E., Nakhleh, L., Warnow, T.: Network (reticulate) evolution: Biology, models, and algorithms. In: The Pacific Symposium on Biocomputing (2004)Google Scholar
  62. 62.
    MacLeod, D., Charlebois, R., Doolittle, F., Bapteste, E.: Deduction of probable events of lateral gene transfer through comparison of phylogenetic trees by recursive consolidation and rearrangement. BMC Evolutionary Biology 5 (2005)CrossRefGoogle Scholar
  63. 63.
    Maddison, W.: Gene trees in species trees. Systematic Biology 46(3), 523–536 (1997)Google Scholar
  64. 64.
    Makarenkov, V., Kevorkov, D., Legendre, P.: Phylogenetic network construction approaches. In: Applied Mycology and Biotechnology, pp. 61–97 (2006)Google Scholar
  65. 65.
    Mallet, J.: Hybridization as an invasion of the genome. TREE 20(5), 229–237 (2005)Google Scholar
  66. 66.
    Mallet, J.: Hybrid speciation. Nature 446, 279–283 (2007)CrossRefGoogle Scholar
  67. 67.
    McClilland, M., Sanderson, K., Clifton, S., Latreille, P., Porwollik, S., Sabo, A., Meyer, R., Bieri, T., Ozersky, P., McLellan, M., Harkins, C.,Wang, C., Nguyen, C., Berghoff, A., Elliott, G., Kohlberg, S., Strong, C., Du, F., Carter, J., Kremizki, C., Layman, D., Leonard, S., Sun, H., Fulton, L., Nash, W., Miner, T., Minx, P., Delehaunty, K., Fronick, C., Magrini, V., Nhan, M., Warren, W., Florea, L., Spieth, J., Wilson, R.: Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of salmonella enterica that cause typhoid. Nature Genetics 36(12), 1268–1274 (2004)CrossRefGoogle Scholar
  68. 68.
    Meacham, C.: Theoretical and computational considerations of the compatibility of qualitative taxonomic characters. NATO ASI Series G1 on Numerical Taxonomy (1983)Google Scholar
  69. 69.
    Meng, C., Kubatko, L.: Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: A model. Theoretical Population Biology 75(1), 35–45 (2009)CrossRefGoogle Scholar
  70. 70.
    Moret, B., Nakhleh, L., Warnow, T., Linder, C., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic networks:Modeling, reconstructibility, and accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 13–23 (2004)CrossRefGoogle Scholar
  71. 71.
    Morin, M., Moret, B.: NetGen: Generating phylogenetic networks with diploid hybrids. Bioinformatics 22(15), 1921–1923 (2006)CrossRefGoogle Scholar
  72. 72.
    Morrison, D.A.: Networks in phylogenetic analysis: new tools for population biology. International Journal of Parasitology 35, 567–582 (2005)CrossRefGoogle Scholar
  73. 73.
    Mower, J., Stefanovic, S., Young, G., Palmer, J.: Gene transfer from parasitic to host plants. Nature 432, 165–166 (2004)CrossRefGoogle Scholar
  74. 74.
    Nakamura, Y., Itoh, T.,Matsuda, H., Gojobori, T.: Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nature Genetics 36(7), 760–766 (2004)CrossRefGoogle Scholar
  75. 75.
    Nakhleh, L.: Phylogenetic networks. Ph.D. thesis, The University of Texas at Austin (2004)Google Scholar
  76. 76.
    Nakhleh, L.: A metric on the space of reduced phylogenetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2009). To appearGoogle Scholar
  77. 77.
    Nakhleh, L., Ringe, D., Warnow, T.: Perfect phylogenetic networks: A new methodology for reconstructing the evolutionary history of natural languages. LANGUAGE, Journal of the Linguistic Society of America 81(2), 382–420 (2005)Google Scholar
  78. 78.
    Nakhleh, L., Ruths, D.,Wang, L.: RIATA-HGT: A fast and accurate heuristic for reconstructing horizontal gene transfer. In: L. Wang (ed.) Proceedings of the Eleventh International Computing and Combinatorics Conference (COCOON 05), pp. 84–93 (2005). LNCS #3595Google Scholar
  79. 79.
    Nakhleh, L., Sun, J.,Warnow, T., Linder, R., Moret, B., Tholse, A.: Towards the development of computational tools for evaluating phylogenetic network reconstruction methods. In: Proceedings of the 8th Pacific Symposium on Biocomputing, pp. 315–326.World Scientific Pub. (2003)Google Scholar
  80. 80.
    Noor, M., Feder, J.: Speciation genetics: Evolving approaches. Nature Review Genetics 7, 851–861 (2006)CrossRefGoogle Scholar
  81. 81.
    Ochman, H., Lawrence, J., Groisman, E.: Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784), 299–304 (2000)CrossRefGoogle Scholar
  82. 82.
    Posada, D., Crandall, K.: The effect of recombination on the accuracy of phylogeny estimation. J. Mol. Evol. 54(3), 396–402 (2002)Google Scholar
  83. 83.
    Posada, D., Crandall, K., Holmes, E.: Recombination in evolutionary genomics. Annu. Rev. Genet. 36, 75–97 (2002)CrossRefGoogle Scholar
  84. 84.
    Pupko, T., Pe’er, I., Shamir, R., Graur, D.: A fast algorithm for joint reconstruction of ancestral amino-acid sequences. Mol. Biol. Evol. 17(6), 890–896 (2000)Google Scholar
  85. 85.
    Rieseberg, L., Baird, S., Gardner, K.: Hybridization, introgression, and linkage evolution. Plant Molecular Biology 42(1), 205–224 (2000)CrossRefGoogle Scholar
  86. 86.
    Rieseberg, L., Carney, S.: Plant hybridization. New Phytologist 140(4), 599–624 (1998)CrossRefGoogle Scholar
  87. 87.
    Rosenberg, N.: Gene genealogies. In: C. Fox, J.B. Wolf (eds.) Evolutionary Genetics: Concepts and Case Studies, chap. 15. Oxford Univ. Press University Press (2005)Google Scholar
  88. 88.
    Rosenberg, N., Tao, R.: Discordance of species trees with their most likely gene trees: The case of five taxa. Systematic Biology 57, 131–140 (2008)CrossRefGoogle Scholar
  89. 89.
    Sang, T., Zhong, Y.: Testing hybridization hypotheses based on incongruent gene trees. Systematic Biology 49(3), 422434 (2000)Google Scholar
  90. 90.
    Song, Y.: Properties of subtree-prune-and-regraft operations on totally-ordered phylogenetic trees. Annals of Combinatorics 10, 129–146 (2006)CrossRefMathSciNetGoogle Scholar
  91. 91.
    Song, Y., Ding, Z., Gusfield, D., Langley, C., Wu, Y.: Algorithms to distinguish the role of gene-conversion from single-crossover recombination in the derivation of SNP sequences in populations. Journal of Computational Biology 14, 1273–1286 (2007)CrossRefMathSciNetGoogle Scholar
  92. 92.
    Song, Y., Hein, J.: Parsimonious reconstruction of sequence evolution and haplotype blocks: Finding the minimum number of recombination events. In: Proc. 3rd Int’l Workshop Algorithms in Bioinformatics (WABI03), vol. 2812, pp. 287–302. Springer-Verlag (2003)Google Scholar
  93. 93.
    Song, Y., Hein, J.: On the minimum number of recombination events in the evolutionary history of DNA sequences. Journal of Mathematical Biology 48, 160–186 (2004)MATHCrossRefMathSciNetGoogle Scholar
  94. 94.
    Song, Y., Hein, J.: Constructing minimal ancestral recombination graphs. Journal of Computational Biology 12, 147–169 (2005)CrossRefGoogle Scholar
  95. 95.
    Steel, M., Penny, D.: Parsimony, likelihood, and the roles of models in molecular phylogenetics. Mol. Biol. Evol. 17, 839–850 (2000)Google Scholar
  96. 96.
    Strimmer, K., Moulton, V.: Likelihood analysis of phylogenetic networks using directed graphical models. Mol. Biol. Evol. 17, 875–881 (2000)Google Scholar
  97. 97.
    Tajima, F.: Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983)Google Scholar
  98. 98.
    Than, C., Jin, G., Nakhleh, L.: Integrating sequence and topology for efficient and accurate detection of horizontal gene transfer. In: Proceedings of the Sixth RECOMB Comparative Genomics Satellite Workshop, Lecture Notes in Bioinformatics, vol. 5267, pp. 113–127 (2008)Google Scholar
  99. 99.
    Than, C., Nakhleh, L.: SPR-based tree reconciliation: Non-binary trees and multiple solutions. In: Proceedings of the Sixth Asia Pacific Bioinformatics Conference (APBC), pp. 251–260 (2008)Google Scholar
  100. 100.
    Than, C., Ruths, D., Innan, H., Nakhleh, L.: Confounding factors in HGT detection: Statistical error, coalescent effects, and multiple solutions. Journal of Computational Biology 14(4), 517–535 (2007)CrossRefMathSciNetGoogle Scholar
  101. 101.
    Than, C., Ruths, D., Nakhleh, L.: PhyloNet: A software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9, 322 (2008)CrossRefGoogle Scholar
  102. 102.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Journal of Computational Biology 8(1), 69–78 (2001)CrossRefGoogle Scholar
  103. 103.
    Welch, R., Burland, V., Plunkett, G., Redford, P., Roesch, P., Rasko, D., Buckles, E., Liou, S., Boutin, A., Hackett, J., Stroud, D., Mayhew, G., Rose, D., Zhou, S., Schwartz, D., Perna, N., Mobley, H., Donnenberg, M., Blattner, F.: Extensive mosaic structure revealed by the complete genome sequence of uropathogenic escherichia coli. Proc. Nat’l Acad. Sci., USA 99(26), 17,020–17,024 (2002)Google Scholar
  104. 104.
    Willson, S.: Reconstruction of certain phylogenetic networks from the genomes at their leaves. Journal of Theoretical Biology 252, 338–349 (2008)CrossRefGoogle Scholar
  105. 105.
    Wu, Y.: A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25(2), 190–196 (2009)CrossRefGoogle Scholar

Copyright information

© Springer US 2010

Authors and Affiliations

  1. 1.Rice UniversityHoustonUSA

Personalised recommendations