Autonomic Middleware for Automotive Embedded Systems

  • Richard Anthony
  • DeJiu Chen
  • Martin Törngren
  • Detlef Scholle
  • Martin Sanfridson
  • Achim Rettberg
  • Tahir Naseer
  • Magnus Persson
  • Lei Feng
Chapter

Abstract

This chapter describes DySCAS: an advanced autonomic platform-independent middleware framework for automotive embedded systems. The concepts and architecture are motivated and described in detail, focusing on the need for, and achievement of, high flexibility and automatic run-time reconfiguration. The design of the middleware is positioned with respect to the way it overcomes the specific technical, environmental, and performance challenges of the automotive domain. Self-management is achieved in terms of automatic configuration for context-aware behavior, resource-use efficiency, and self-healing to handle run-time detected faults. The self-management is governed by the use of policies distributed throughout the middleware components. The simulation techniques that have been used for extensive validation are described and some key results presented. A reference implementation is presented, illustrating the way in which the various concepts and mechanisms can be realized and orchestrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LINX download page at Sourceforge.net. http://sourceforge.net/projects/linx/
  2. 2.
    Abdelzaher, T., Bjorklund, M., Dawson, S., Feng, W.C., Jahanian, F., Johnson, S. Mehra, A., Mitton, T., Shaikh, A., Shin, K., Wang, Z., Zou, H.: Armada middleware and communication services. Journal of Real-Time Systems 16, 127–153 (1999)CrossRefGoogle Scholar
  3. 3.
    Abdelzahler, T.F., Atkins, E.M., Shin, K.G.: QoS negotiation in real-time systems and its application to automated flight control. IEEE Transactions on Computers 49(11), 1170–1183(2000)Google Scholar
  4. 4.
    Albus, J., Proctor, F.: A reference model architecture for intelligent hybrid control systems. In: Proceedings of the International Federation of Automatic Control. San Fransisco, CA (1996)Google Scholar
  5. 5.
    Ananthanarayanan, R., Mohania, M., Gupta, A.: Management of conflicting obligations in self-protecting policy-based systems. In: Proc. 2nd Intl. Conf. on Automatic Computing (ICAC), pp. 274–285. IEEE, Seattle (2005)Google Scholar
  6. 6.
    Anceaume, E., Cabillic, G., Chevochot, P., Puant, I.: Hades: a middleware support for distributed safety-critical real-time applications. In: Proceedings of International Conference on Distributed Computing Systems, pp. 344–351 (1998). URL http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=679736
  7. 7.
    Anthony, R.: Policy autonomics website. http://www.policyautonomics.net/
  8. 8.
    Anthony, R.: A versatile policy toolkit supporting run-time policy reconfiguration. Cluster Computing: The Journal of Networks, Software Tools and Applications 11, 287–298 (2008)Google Scholar
  9. 9.
    Anthony, R., Ekelin, C.: Policy-driven self-management for an automotive middleware. In: Proceedings of First International Workshop on Policy-Based Autonomic Computing (PBAC 2007), at the Fourth IEEE International Conference on Autonomic Computing, in Jacksonville, Florida, USA, Jun. 11 – 15 (2007)Google Scholar
  10. 10.
    Anthony, R., Rettberg, A., Jahnich, I., Törngren, M., Chen, D., Ekelin, C.: Towards a dynamically reconfigurable automotive control system architecture. In: Proceedings of International Embedded Systems Symposium. IFIP, Irvine, CA, USA (2007)Google Scholar
  11. 11.
    Anthony, R.J.: The Agile policy expression language for autonomic systems. ITSSA 4(1), 381–398(2006)Google Scholar
  12. 12.
    Anthony, R.J.: Policy-centric integration and dynamic composition of autonomic computing techniques. In: ICAC '07: Proc. 4th Intl. Conf. on Autonomic Computing. IEEE Computer Society, Jacksonville, Florida, USA (2007)Google Scholar
  13. 13.
    AUTOSAR Consortium: http://www.autosar.org
  14. 14.
    Axelsson, M., Eriksson, M., Francke, T., Hammarstrand, F., Lindell, A., Nyqvist, O., Persson, E., Strömberg, C., Svensson, M., Thrönqvist, N.: An automotive embedded systems demonstrator; the Saint truck – Saint3: mechanics and EE platform enhancements, intelligent model supported configuration and reverse steering. Tech. Rep. TRITA MMK 2008:01, ISSN 1400–1179, ISRN/KTH/MMK/R-08/01-SE, Mechatronics Lab, Department of Machine Design, Royal Institute of Technology (KTH) (2008). URL http://www.md.kth.se/saint/publications/Saint3/SAINT_3_FinalReport_MMK_KTH.pdf
  15. 15.
    Basra, R., Lu, K., Rzevski, G., Skobelev, P.: Resolving scheduling issues of the London underground using a multi-agent system. In: 2nd Intl. Conf. on Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS), LNAI 3593, pp. 188–196. Springer Verlag, Copenhagen, Denmark (2005)Google Scholar
  16. 16.
    Beveridge, M., Koopman, P.: Jini meets embedded control networking: A case study in portability failure. In: Proceedings of the The Seventh IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002). IEEE Computer Society, Washington, DC, USA (2002)Google Scholar
  17. 17.
    Blair, L., Blair, G., Andersen, A., Jones, T.: Formal support for dynamic QoS management in the development of open component-based distributed systems. In: IEE Proceedings Software, vol. 148 (2001)Google Scholar
  18. 18.
    Brandt, S.A., Nutt, G.J.: Flexible soft real-time processing in middleware. Real-Time Systems 22(1–2), 77–118 (2002)MATHCrossRefGoogle Scholar
  19. 19.
    Chomicki, J., Lobo, J.: Monitors for history-based policies. Policies for Distributed Systems and Networks, pp. 57–72. Springer (2001)Google Scholar
  20. 20.
    Cointe, P. (ed.): Meta-Level Architectures and Reflection: 2nd International Confer-ence, Reflection '99, St. Malo, France, Lecture Notes in Comp. Science, vol. 1616. Springer (1999)Google Scholar
  21. 21.
    Corman, D., Loyall, J.P., Schantz, R.E., Schmidt, D.C.: Integrated adaptive QoS management in middleware: A case study. In: RTAS '04: Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium, p. 276. IEEE Computer Society, Washington, DC, USA (2004)Google Scholar
  22. 22.
    Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder policy specification language. Policies for Distributed Systems and Networks, pp. 18–38. Springer, Berlin (2001)CrossRefGoogle Scholar
  23. 23.
    Dunkels, A., Finne, N., Eriksson, J., Voigt, T.: Run-time dynamic linking for reprogramming wireless sensors. In: Proceedings of the 4th international conference on Embedded networked sensor systems, pp. 15–28. Boulder, Colorado, USA (2006)Google Scholar
  24. 24.
    DySCAS Consortium: DySCAS project website. http://www.DySCAS.org
  25. 25.
  26. 26.
  27. 27.
    Feng, L., Chen, D., Persson, M., Naseer Qureshi, T., Törngren, M.: Dynamic configuration and quality of service in autonomic embedded systems. Tech. Rep. TRITA-MMK 2008:12, ISSN 1400-1179, ISRN/KTH/MMK/R-07/12-SE, Department of Machine Design, KTH, Stockholm, Sweden (2008:12)Google Scholar
  28. 28.
    Feng, L., Chen, D., Törngren, M.: Self configuration of dependent tasks for dynamically reconfigurable automotive embedded systems. In: Proceedings of 47th IEEE Conference on Decision and Control, Cancun, Mexico, Dec. 9 – 11 (2008)Google Scholar
  29. 29.
    Feng, L., Törngren, M., Chen, D.: Safety analysis of dynamically self-configuring automotive systems. Tech. Rep. TRITA-MMK 2008:13, ISSN 1400-1179, ISRN/KTH/MMK/R-07/12-SE, Department of Machine Design, KTH, Stockholm, Sweden (2008:13)Google Scholar
  30. 30.
    Forsight Vehicle: Foresight vehicle technology roadmap, technology and research directions for future road vehicles. Tech. rep., Society of Motor Manufacturers and Traders Ltd (2004)Google Scholar
  31. 31.
    Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2004)Google Scholar
  32. 32.
    García, J.: A gateway for interconnecting statically and dynamically configurable embedded systems. Master's thesis, Department of Machine Design, KTH, Stockholm, Sweden (2008). Report number MMK2008:76 MDA330Google Scholar
  33. 33.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Company (1979)Google Scholar
  34. 34.
    Hägglund, J.: Analysis and design of application policies and checkpointing in a distributed automotive middleware. Master's thesis, Uppsala University (2008)Google Scholar
  35. 35.
    HAVi: Home audio video interoperability. http://www.havi.org
  36. 36.
    Hopcroft, J.E.: Introduction to Automata Theory, Languages, and Computation. Pearson Addison Wesley (2007)Google Scholar
  37. 37.
    IBM: An architectural blueprint for autonomic computing. ibm and autonomic computing. Tech. rep. (2003). http://www-306.ibm.com/autonomic/pdfs/ACwpFinal.pdf
  38. 38.
    IBM Research: Policy technologies. http://www.research.ibm.com/policytechnologies/. IBMResearchPolicyTechnologies
  39. 39.
    Klefstad, R., Schmidt, D.C., O'Ryan, C.: The design of a real-time CORBA ORB using Real-Time Java. In: Proc. IEEE Intl. Symp. Object-Oriented Real-Time Dist. Comput-ing (2002)Google Scholar
  40. 40.
    Kluge, F., Mische, J., Uhrig, S., Ungerer, T.: Building adaptive embedded systems by-monitoring and dynamic loading of application modules. In: Workshop on Adaptive and Reconfigurable Embedded Systems (APRES'08). St. Louis, MO, USA (2008)Google Scholar
  41. 41.
    Kohli, M., Lobo, J.: Realizing network control policies using distributed action plans. Journal of Network and Systems Management 3(11), 305–327 (2003)CrossRefGoogle Scholar
  42. 42.
    Kon, F., Marques, J.R., Yamane, T., Campbell, R.H., Mickunas., M.D.: Design, implementation, and performance of an automatic configuration service for distributed component systems. Software: Practice and Experience (2005)Google Scholar
  43. 43.
    Lee, C., Lehoczky, J., Siewiorek, D., Rajkumar, R., Hansen, J.: A scalable solution to the multi-resource QoS problem. In: Proceedings of the 20th IEEE Real-Time Systems Symposium, pp. 315–326. Phoenix, AZ, USA (1999)Google Scholar
  44. 44.
    Leveson, N.G.: Safeware: System safety and computers. Addison-Wesley Publishing Company (1995)Google Scholar
  45. 45.
    Levine, J.R.: Linkers and Loaders. Morgan-Kauffman (1999)Google Scholar
  46. 46.
    Li, Y.: Real-time analysis of managed communication for the DySCAS middleware. Master's thesis, Linköping University (2008)Google Scholar
  47. 47.
  48. 48.
    Lobo, J., Bhatia, R., Naqvi, S.: A policy description language. In: Proc. AAAI, pp. 291–298. Orlando, USA (1999)Google Scholar
  49. 49.
    Lotlikar, R., Vatsavai, R., Mohania, M., Chakravarthy, S.: Policy schedule advisor for performance management. In: Proc. of the 2nd Intl. Conf. on Autonomic Computing (ICAC), pp. 183–192. IEEE, Seattle (2005)Google Scholar
  50. 50.
    Lu, C., Wang, X., Koutsoukos, X.D.: Feedback utilization control in distrib-uted real-time systems with end-to-end task. IEEE Transactions on Parallel and Distributed Systems 16(6), 550–561 (2005)Google Scholar
  51. 51.
    Lymberopoulos, L., Lupu, E., Sloman, M.: An adaptive policy based management framework for differentiated services networks. In: Workshop on policies for distributed systems and networks, pp. 147–158. California (2002)Google Scholar
  52. 52.
    Mascolo, C., Zachariadis, S., Pietro Picco, G., Costa, P., Blair, G., Bencomo, N., Coulson, G., Okanda, P., Sivaharan, T.: RUNES middleware architecture. d5.2.1. Tech. rep., RUNES Project. RUNES/D5.2.1/PU1/v1.7, FP6. Inf. Society Technologies. EC (2005)Google Scholar
  53. 53.
    McKinsey & Company: Auto catalog (2000)Google Scholar
  54. 54.
    Microsoft: .NET framework. http://www.microsoft.com/net/default.mspx
  55. 55.
  56. 56.
    Object Management Group: CORBA 3.0. http://www.omg.org/
  57. 57.
    Object Management Group: Real-time CORBA joint revised submission. Tech. Rep. OMG Document orbos/99-02-12 ed. (1999)Google Scholar
  58. 58.
    Object Management Group: Unified modeling language: Superstructure, version 2.1.1 formal/2007-02-03. Tech. rep. (2007)Google Scholar
  59. 59.
    Ohlin, M., Henriksson, D., Cervin, A.: TrueTime 1.5 – Reference Manual. Department of Automatic Control, Lund University, Sweden. http://www.control.1th.se/truetime
  60. 60.
    OSGi Alliance: The OSGi service platform – dynamic services and networked devices. http://www.osgi.org. OSGi
  61. 61.
    Persson, M., Naseer Qureshi, T.: Survey on dynamic load balancing in distributed computer systems. Tech. Rep. TRITA-MMK 2008:11, ISSN 1400–1179, ISRN/KTH/MMK/R-07/12-SE, Mechatronics Lab, Department of Machine Design, KTH, Stockholm, Sweden (2008)Google Scholar
  62. 62.
    Persson, M., Naseer Qureshi, T., Törngren, M.: Suitability of dynamic load balancing in resource-constrained embedded systems: An overview of challenges and limitations. In: Proceedings of Workshop on Adaptive and Reconfigurable Embedded Systems (APRES), Apr. 21, 2008, part of the 14th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), St. Louis, MO, USA (2008)Google Scholar
  63. 63.
    Robert Bosch GmbH: CAN specification, version 2 (1991)Google Scholar
  64. 64.
    Ronen, O., Allen, R.: Autonomic policy creation with singlestep unity. In: Proc. of the 2nd Intl. Conf. on Autonomic Computing (ICAC), pp. 353–355. IEEE, Seattle (2005)Google Scholar
  65. 65.
    Schmidt, D.C.: Adaptive middleware: Middleware for real-time and embedded sys-tems. Communications of the ACM 45(6) (2002)Google Scholar
  66. 66.
    Sha, L., Rajkumar, R., Gagliardi., M.: Evolving dependable real-time systems. In: Proc. IEEE Aerospace Conference (1996)Google Scholar
  67. 67.
    Sun Microsystems: Enterprise Java Beans specification. http://java.sun.com/products/ejb/docs.html
  68. 68.
    Sun Microsystems: Jini network technology. http://www.sun.com/software/jini/
  69. 69.
    Tan, J., Poslad, S.: Dynamic security reconfiguration for the semantic web. Engi-neering Applications of Artificial Intelligence 17, 783–797 (2004)CrossRefGoogle Scholar
  70. 70.
    Tindell, K., Burns, A., Wellings, A.: Allocating hard real time tasks. an np-hard problem made easy. Journal of Real-Time Systems 4, 145–165 (1992)CrossRefGoogle Scholar
  71. 71.
    Törngren, M., Chen, D., Malvius, D., Axelsson, J.: Model based development of automotive embedded systems. Automotive Embedded Systems Handbook. Industrial Information Technology. Taylor and Francis, CRC Press (2008)Google Scholar
  72. 72.
    Wang, X., Jia, D., Lu, C., Koutsoukos, X.D.: DEUCON: Decentralized end-to-end utilization control for distributed real-time systems. IEEE Transactions on Parallel and Distributed Systems 18(7), 996–1009 (2007)CrossRefGoogle Scholar
  73. 73.
    Ward, P., Pelc, M., Hawthorne, J., Anthony, R.: Embedding dynamic behaviour into a self-configuring software system. In: Proceedings of 5th International Conference on Autonomic and Trusted Computing (ATC-08), Stavanger, Norway, Jun. 23 – 25 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Richard Anthony
    • 1
  • DeJiu Chen
    • 2
  • Martin Törngren
    • 2
  • Detlef Scholle
    • 3
  • Martin Sanfridson
    • 4
  • Achim Rettberg
    • 5
  • Tahir Naseer
    • 2
  • Magnus Persson
    • 2
  • Lei Feng
    • 2
  1. 1.The University of GreenwichLondonUK
  2. 2.Royal Institute of Technology (KTH)StockholmSweden
  3. 3.EneaKistaSweden
  4. 4.Volvo Technology Corporation, Mechatronics & SoftwareGothenburgSweden
  5. 5.Carl von Ossietzky Universität Oldenburg, Offis e.V.OldenburgGermany

Personalised recommendations