Multicast Routing in Structured Overlays and Hybrid Networks

  • Matthias WählischEmail author
  • Thomas C. Schmidt


Key-based routing has enabled efficient group communication on the application or service middleware layer, stimulated by the need of applications to access multicast. These developments follow a continuous debate about network layer multicast that had lasted for about 30 years history of the Internet. The IP host group model today still faces a strongly divergent state of deployment. In this chapter, we first review the key concepts of multicast and broadcast data distribution on structured overlays. Second, we perform a comprehensive theoretical analysis examining the different distribution trees constructed on top of a key-based routing layer. Characteristic performance measures of the multicast approaches are compared in detail and major structural differences are identified. Overlay multicast overcomes deployment problems on the price of a performance penalty. Hybrid approaches, which dynamically combine multicast in overlay and underlay, adaptively optimize group communication. We discuss current schemes along with its integration in common multicast routing protocols in the third part of this chapter. Finally, we reconsider and enhance approaches to a common API for group communication, which serves the requirements of data distribution and maintenance for multicast and broadcast on a middleware abstraction layer, and in particular facilitates hybrid multicast schemes.


Multicast Group Distribution Tree Rendezvous Point Multicast Route Overlay Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumgart, I., Heep, B., Krause, S.: OverSim: A Flexible Overlay Network Simulation Framework. In: M. Faloutsos, et al. (eds.) Proceedings of the 10th IEEE Global Internet Symposium, pp. 79–84. IEEE Computer Society, Washington, DC, USA (2007)CrossRefGoogle Scholar
  2. 2.
    Birrer, S., Bustamante, F.E.: The Feasibility of DHT-based Streaming Multicast. In: MASCOTS ’05: Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, pp. 288–298. IEEE Computer Society, Washington, DC, USA (2005). DOI Google Scholar
  3. 3.
    Bradler, D., Kangasharju, J., Mühlhäuser, M.: Optimally Efficient Prefix Search and Multicast in Structured P2P Networks. Technical Report TUD-CS-2008-103, TU Darmstadt (2008)Google Scholar
  4. 4.
    Brown, A., Kolberg, M.: Tools for Peer-to-Peer Network Simulations. IRTF Internet Draft – work in progress 0, P2PRG (2006)Google Scholar
  5. 5.
    Buford, J.: Hybrid Overlay Multicast Framework. IRTF Internet Draft – work in progress 2, SAM RG (2008)Google Scholar
  6. 6.
    Buford, J.: SAM Overlay Protocol. IRTF Internet Draft – work in progress 1, SAM RG (2008)Google Scholar
  7. 7.
    Cain, B., Deering, S., Kouvelas, I., Fenner, B., Thyagarajan, A.: Internet Group Management Protocol, Version 3. RFC 3376, IETF (2002)Google Scholar
  8. 8.
    Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A.I.T., Singh, A.: SplitStream: High-Bandwidth Content Distribution in Cooperative Environments. In: M.F. Kaashoek, I. Stoica (eds.) Peer-to-Peer Systems II. Second International Workshop, IPTPS 2003 Berkeley, CA, USA, February 21–22, 2003 Revised Papers, LNCS, vol. 2735, pp. 292–303. Springer–Verlag, Berlin Heidelberg (2003)Google Scholar
  9. 9.
    Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale and decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in Communications 20(8), 100–110 (2002)CrossRefGoogle Scholar
  10. 10.
    Castro, M., Jones, M.B., Kermarrec, A.M., Rowstron, A., Theimer, M., Wang, H., Wolman, A.: An Evaluation of Scalable Application-level Multicast Built Using Peer-to-peer Overlays. In: Proceedings of the Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies (Infocom 2003), vol. 2, pp. 1510–1520. IEEE Computer Society, Washington, DC, USA (2003)Google Scholar
  11. 11.
    Chalmers, R.C., Almeroth, K.C.: On the topology of multicast trees. IEEE/ACM Trans. Netw. 11(1), 153–165 (2003). DOI CrossRefGoogle Scholar
  12. 12.
    Christensen, M., Kimball, K., Solensky, F.: Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches. RFC 4541, IETF (2006)Google Scholar
  13. 13.
    Dabek, F., Zhao, B.Y., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a Common API for Structured Peer-to-Peer Overlays. In: M.F. Kaashoek, I. Stoica (eds.) Peer-to-Peer Systems II, Second International Workshop, IPTPS 2003, Berkeley, CA, USA, February 21-22,2003, Revised Papers, LNCS, vol. 2735, pp. 33–44. Springer–Verlag, Berlin Heidelberg (2003)Google Scholar
  14. 14.
    Druschel, P., et al.: FreePastry. (2008)
  15. 15.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edition edn. Wiley & Sons, New York (1968)zbMATHGoogle Scholar
  16. 16.
    Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised). RFC 4601, IETF (2006)Google Scholar
  17. 17.
    Fenner, B., He, H., Haberman, B., Sandick, H.: Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding (”IGMP/MLD Proxying”). RFC 4605, IETF (2006)Google Scholar
  18. 18.
    Garyfalos, A., Almeroth, K.: A Flexible Overlay Architecture for Mobile IPv6 Multicast. IEEE Journal on Selected Areas in Communications 23(11), 2194–2205 (2005)CrossRefGoogle Scholar
  19. 19.
    Handley, M., Kouvelas, I., Speakman, T., Vicisano, L.: Bidirectional Protocol Independent Multicast (BIDIR-PIM). RFC 5015, IETF (2007)Google Scholar
  20. 20.
    Hazarika, S., Towsley, D.: Delay Analysis of Application Level Multicast on Content Addressable Networks. In: Proceedings of Globecom 2004, pp. 1271–1277. IEEE Comm. Soc., Dallas, TX (2004)Google Scholar
  21. 21.
    Jennings, C., Lowekamp, B.B., Rescorla, E., Baset, S.A., Schulzrinne, H.: REsource LOcation And Discovery (RELOAD). IETF Internet Draft – work in progress 00, P2PSIP Working Group (2008)Google Scholar
  22. 22.
    Johnson, D.B., Perkins, C., Arkko, J.: Mobility Support in IPv6. RFC 3775, IETF (2004)Google Scholar
  23. 23.
    Lim, B., Ettikan, K.: ALM API for Topology Management and Network Layer Transparent Multimedia Transport. IRTF Internet Draft – work in progress 0, individual (2008)Google Scholar
  24. 24.
    López, P.G., Pairot, C., Mondéjar, R., Ahulló, J.P., Tejedor, H., Rallo, R.: PlanetSim: A New Overlay Network Simulation Framework. In: T. Gschwind, C. Mascolo (eds.) Proceedings 4th International Workshop on Software Engineering and Middleware (SEM 2004). Revised Selected Papers, LNCS, vol. 3437, pp. 123–136. Springer–Verlag, Berlin Heidelberg (2005)Google Scholar
  25. 25.
    Mimura, N., Nakauchi, K., Morikawa, H., Aoyama, T.: RelayCast: A Middleware for Application-level Multicast Services. In: S. Matsuoka, Y. Ishikawa (eds.) Proceedings of the 3st IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID ’03), pp. 434–441. IEEE Computer Society, Washington, DC, USA (2003)CrossRefGoogle Scholar
  26. 26.
    Naicken, S., Livingston, B., Basu, A., Rodhetbhai, S., Wakeman, I., Chalmers, D.: The State of Peer-to-Peer Simulators and Simulations. SIGCOMM Computer Communication Review 37(2), 95–98 (2007)CrossRefGoogle Scholar
  27. 27.
    Phillips, G., Shenker, S., Tangmunarunkit, H.: Scaling of multicast trees: comments on the chuang-sirbu scaling law. In: SIGCOMM ’99: Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication, pp. 41–51. ACM Press, New York, NY, USA (1999). DOI CrossRefGoogle Scholar
  28. 28.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable Content-Addressable Network. In: SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 161–172. ACM, New York, NY, USA (2001)CrossRefGoogle Scholar
  29. 29.
    Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Application-Level Multicast Using Content-Addressable Networks. In: J. Crowcroft, M. Hofmann (eds.) Networked Group Communication, Third International COST264 Workshop, NGC 2001, London, UK, November 7-9, 2001, Proceedings, LNCS, vol. 2233, pp. 14–29. Springer–Verlag, London, UK (2001)Google Scholar
  30. 30.
    Ratnasamy, S.P.: A Scalable Content-Addressable Network. Ph.D. thesis, University of California, Berkeley (2002)Google Scholar
  31. 31.
    Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), pp. 329–350 (2001)Google Scholar
  32. 32.
    Rowstron, A., Kermarrec, A.M., Castro, M., Druschel, P.: Scribe: The Design of a Large-Scale and Event Notification Infrastructure. In: J. Crowcroft, M. Hofmann (eds.) Networked Group Communication. Third International COST264 Workshop, NGC 2001. Proceedings, LNCS, vol. 2233, pp. 30–43. Springer–Verlag, Berlin Heidelberg (2001)Google Scholar
  33. 33.
    Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-End Arguments in System Design. ACM Trans. Comput. Syst. 2(4), 277–288 (1984). DOI CrossRefGoogle Scholar
  34. 34.
    Shudo, K., Tanaka, Y., Sekiguchi, S.: Overlay Weaver: An Overlay Construction Toolkit. Computer Communications 31(2), 402–412 (2008). Special issue on foundations of peer-to-peer computingCrossRefGoogle Scholar
  35. 35.
    Thaler, D., Talwar, M., Aggarwal, A., Vicisano, L., Pusateri, T.: Automatic IP Multicast Without Explicit Tunnels (AMT). Internet Draft – work in progress 9, IETF (2008)Google Scholar
  36. 36.
    Van Mieghem, P.: Performance Analysis of Communications Networks and Systems. Cambridge University Press, Cambridge, New York (2006)zbMATHGoogle Scholar
  37. 37.
    Vida, R., Costa, L.H.M.K.: Multicast Listener Discovery Version 2 (MLDv2) for IPv6. RFC 3810, IETF (2004)Google Scholar
  38. 38.
    Wählisch, M.: Scalable Adaptive Group Communication on Bi-directional Shared Prefix Trees Technical Report B-08-14, FU Berlin, Mathematik/Informatik (2008). URL
  39. 39.
    Wählisch, M., Schmidt, T.C.: Between Underlay and Overlay: On Deployable, Efficient, Mobility-agnostic Group Communication Services. Internet Research 17(5), 519–534 (2007). Selected papers from the TERENA networking conference 2007CrossRefGoogle Scholar
  40. 40.
    Wählisch, M., Schmidt, T.C., Wittenburg, G.: Broadcasting in Prefix Space: P2P Data Dissemination with Predictable Performance. Technical report, Open Archive: (2008). URL
  41. 41.
    Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.: Tapestry: A Resilient Global-Scale Overlay for Service Deployment. IEEE Journal on Selected Areas in Communications 22(1), 41–53 (2004)CrossRefGoogle Scholar
  42. 42.
    Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An Infrastructure for Fault-tolerant Wide-area Location and. Technical Report UCB/CSD-01-1141, University of California at Berkeley (2001)Google Scholar
  43. 43.
    Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination. In: J. Nieh, H. Schulzrinne (eds.) Proceedings of the 11th International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV ’01), pp. 11–20. ACM, New York, NY, USA (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of InformatikHAW HamburgHamburgGermany
  2. 2.Freie Universität BerlinInstitut für InformatikBerlinGermany

Personalised recommendations