Employing Multicast in P2P Overlay Networks

  • Mario KolbergEmail author


The work on multicast has evolved from bottom IP layer multicast to Application Layer Multicast. While there are issues with the dep-loyment of IP layer multicast, it outperforms Application Layer Multicast. However, the latter has the advantage of an easier dep-loyment. Furthermore, as will be illustrated later in this Chapter, IP layer multicast has the potential to make parallel overlay operations more efficient. Application Layer Multicast is primarily used to send application specific messages/data to a number of nodes.


Application Layer Multicast Tree Multicast Group Host Group Structure Overlay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Aguilar, Datagram Routing for Internet Multicasting, Sigcomm 84, March 1984.Google Scholar
  2. 2.
    M. Ammar. Why Johnny Can’t Multicast: Lessons about the Evolution of the Internet. Keynote - NOSDAV 2003.Google Scholar
  3. 3.
    H. Asaeda, B. Manning. Gap Analysis in IP Multicast Dissemination, in Sustainable Internet, Lecture Notes in Computer Science 4866, Springer Verlag, 2007.Google Scholar
  4. 4.
    A. Ballardie. Core Based Trees Multicasting Architecture, Request for Comments (RFC) 2201, Internet Engineering Taskforce (IETF), Sept. 1997.Google Scholar
  5. 5.
    S. Banerjee, B. Bhattacharjee. A Comparative Study of Application Layer Multicast Protocols, Scholar
  6. 6.
    R. Boivie, N. Feldman , Y. Imai , W. Livens , D. Ooms, Explicit Multicast (Xcast) Concepts and Options, Request for Comments (RFC) 5058, Internet Engineering Taskforce (IETF), Nov. 2007.Google Scholar
  7. 7.
    J. Buford. Hybrid Overlay Multicast Framework. IRTF SAM RG. draft-irtf-sam-hybrid-overlay-framework-02. March’08, Work in Progress.Google Scholar
  8. 8.
    J. Buford, A. Brown, M. Kolberg. Exploiting Parallelism in the Design of Peer-to-Peer Overlays, Computer Communications Journal, Elsevier Science, Vol. 31(3), 2008.Google Scholar
  9. 9.
    J. Buford, M. Kolberg. Hybrid Overlay Multicast Simulation and Evalua-tion, Proceedings 6th IEEE Consumer Communications Networking Con-ference, Jan. 2009.Google Scholar
  10. 10.
    M. Castro, P. Druschel, Y. Charlie Hu, A. Rowstron. Topology-aware routing in structured peer-to-peer overlay networks, in Future Directions in Distributed Computing, Lecture Notes in Computer Science 2584, Springer Verlag, 2003, extended version: Microsoft Technical Report MSR-TR-2002-82.Google Scholar
  11. 11.
    M. Castro, P. Druschel, A-M. Kermarrec , A. Rowstron. SCRIBE: A large-scale and decentralised application-level multicast infrastructure, IEEE Journal on Selected Areas in Communications (JSAC) 2002.Google Scholar
  12. 12.
    R. Chalmers and K. Almeroth, Modeling the Branching Characteristics and Efficiency Gains of Global Multicast Trees, IEEE Infocom, Anchor-age, AK, USA, April 2001.Google Scholar
  13. 13.
    Y. Chu, S.G. Rao, S. Seshan, H. Zhang. A case for end system multicast, IEEE Journal on Selected Areas in Communications, Volume 20, Issue 8, Oct 2002 Page(s): 1456–1471.CrossRefGoogle Scholar
  14. 14.
    J. Chuang and M. Sirbu Pricing multicast communications: A cost-based approach. In Proceedings of INET 1998.Google Scholar
  15. 15.
    S.E. Deering, D.R. Cheriton, Host groups: A Multicast extension to the Internet protocol, Request for Comments (RFC) 966, Internet Engineer-ing Taskforce (IETF), Dec. 1985.Google Scholar
  16. 16.
    C. Diot, B. Levine, J. Lyles, H. Kasserm, D. Balensiefen. Deployment is-sues for the IP multicast service and architecture, IEEE Network, Jan. 2000.Google Scholar
  17. 17.
    P. Francis, Y. Pryadkin, P. Radoslavov, R. Govindan, B. Lindell. YOID: Your Own Internet Distribution, work in progress, available from
  18. 18.
    Q. He, M. Ammar. Dynamic Host-Group/Multi-Destination Routing for Multicast Sessions. Telecommunication Systems, Vol. 28, No. 3–4, pp. 409–433, March 2005.CrossRefGoogle Scholar
  19. 19.
    L. Garces-Erice, E.W.Biersack. MULTI+: A robust and topology-aware peer-to-peer multicast service, Computer Communications, Elsevier Science, Vol. 29, pp. 900–910.Google Scholar
  20. 20.
    M. Hosseini, D.T. Ahmed, S. Shirmohammadi, N.D. Georganas. A Survey of Application-Layer Multicast Protocols, IEEE Communications Surveys & Tutorials, Vol. 9(3), 2007, pp. 58–74.CrossRefGoogle Scholar
  21. 21.
    K. Katrinis, M. May. Application-Layer Multicast, in Peer-to-Peer Systems and Applications, Lecture Notes in Computer Science 3485, Springer Verlag, 2005.Google Scholar
  22. 22.
    L. Lao, J. Cui, M. Gerla, D. Maggiorini. A Comparative Study of Multi-cast Protocols: Top, Bottom, or In the Middle?, Proceedings of 24th IEEE INFOCOM, 2005, pp. 2809–2814.Google Scholar
  23. 23.
    B. Leong, B. Liskov, and E. D. Demaine. EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management. Computer Communications, Elsevier Science, Vol. 29, pp. 1243–1259.Google Scholar
  24. 24.
    P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on the XOR metric, Proceedings of IPTPS 2002, Cambridge, USA.Google Scholar
  25. 25.
    Luiz R. Monnerat and Claudio L. Amorim. D1HT: A Distributed One Hop Hash Table. In Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium (IPDPS), April 2006.Google Scholar
  26. 26.
    G. Phillips, S. Shenker, and H. Tangmunarunkit. Scaling of multicast trees: Comments on the Chuang-Sirbu scaling law. ACM SIGCOMM 1999.Google Scholar
  27. 27.
    Protocol Independent Multicast Group, Internet Engineering Task Force,
  28. 28.
    S. Ratnasamy, M. Handley, R. Karp, S. Shenker. Application-level Multicast using Content-Addressable Networks, Proceedings of NGC 2001, pp. 14–29.Google Scholar
  29. 29.
    S. Ratnasamy, S. Shenker, I. Stoica. Routing algorithms for DHTs: Some open questions. Proceedings of IEEE IPTPS 2002.Google Scholar
  30. 30.
    A. Rowstron, P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems, IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), Heidelberg, Germany, pages 329–350, November, 2001.Google Scholar
  31. 31.
    I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications, Proceedings ACM SIGCOMM 2001, August 2001.Google Scholar
  32. 32.
    P. Van Mieghem, G. Hooghiemstra, and R. van der Hofstad. 2001, On the efficiency of multicast. IEEE/ACM Trans. Netw. 9, 6 (Dec. 2001), 719–732.CrossRefGoogle Scholar
  33. 33.
    D. Waitzman, C. Partridge, S. Deering. Distance Vector Multicast Routing Protocol, Request for Comments (RFC) 1075, Internet Engineering Taskforce (IETF), Nov. 1988.Google Scholar
  34. 34.
    B. Zhang, S. Jamin, L. Zhang. Host multicast: A framework for deliver-ing multicast to end users, Proceedings IEEE Infocom 2002.Google Scholar
  35. 35.
    B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, J. Kubiatowicz . Tapestry: A Resilient Global-scale Overlay for Service Deployment, IEEE Journal on Selected Areas in Communications, January 2004, Vol. 22, No. 1.Google Scholar
  36. 36.
    S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, Y H. Katz, J. D. Kubiatowicz. Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemination, Proceedings of the 11th International Workshop on Network and Operating Systems Support for Digital Audio and Video, 2001, pp. 11–20.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computing Science and MathematicsUniversity of StirlingStirlingScotland

Personalised recommendations