Distributed Hash Tables: Design and Applications

Chapter

Abstract

The tremendous growth of the Internet and large-scale applications such as file sharing and multimedia streaming require the support of efficient search on objects. Peer-to-peer approaches have been proposed to provide this search mechanism scalably. One such approach is the distributed hash table (DHT), a scalable, efficient, robust and self-organizing routing overlay suitable for Internet-size deployment. In this chapter, we discuss how scalable routing is achieved under node dynamics in DHTs. We also present several applications which illustrate the power of DHTs in enabling large-scale peer-to-peer applications. Since wireless networks are becoming increasingly popular, we also discuss the issues of deploying DHTs and various solutions in such networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Internet Domain Survey. www.isc.org/ds
  2. 2.
    Araujo, F., Rodrigues, L., Kaiser, J., Liu, C., Mitidieri, C.: CHR: A distributed hash table for wireless ad hoc networks. In: Proc. of IEEE Distributed Computing Systems Workshops (ICDCSW), pp. 407–413 (2005)Google Scholar
  3. 3.
    Burresi, S., Canali, C., Renda, M.E., Santi, P.: MeshChord: A location-aware, cross-layer specialization of Chord for wireless mesh networks (concise contribution). Pervasive Computing and Communications, 2008. PerCom 2008. Sixth Annual IEEE International Conference on pp. 206–212 (2008)Google Scholar
  4. 4.
    Caesar, M., Castro, M., Nightingale, E.B., O’Shea, G., Rowstron, A.: Virtual ring routing: Network routing inspired by DHTs. SIGCOMM Computer Communication Review 36(4), 351–362 (2006)CrossRefGoogle Scholar
  5. 5.
    Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: Scribe: a large-scale and decentralized application-level multicast infrastructure. Selected Areas in Communications, IEEE Journal 20(8), 1489–1499 (2002)CrossRefGoogle Scholar
  6. 6.
    Clausen, T., Jacquet, P.: Optimized link state routing protocol. In: IETF RFC 3626 (2003)Google Scholar
  7. 7.
    Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative storage with CFS. In: SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating systems principles, pp. 202–215. ACM, New York, NY, USA (2001)CrossRefGoogle Scholar
  8. 8.
    Galluccio, L., Morabito, G., Palazzo, S., Pellegrini, M., Renda, M.E., Santi, P.: Georoy: A location-aware enhancement to Viceroy peer-to-peer algorithm. Computer Network 51(8), 1998–2014 (2007)MATHCrossRefGoogle Scholar
  9. 9.
    Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact of dht routing geometry on resilience and proximity. In: SIGCOMM ’03: Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 381–394. ACM, New York, NY, USA (2003)CrossRefGoogle Scholar
  10. 10.
    Johnson, D., Hu, Y., Maltz, D.: The dynamic source routing protocol (dsr) for mobile ad hoc networks for ipv4. In: IETF RFC 4728 (2007)Google Scholar
  11. 11.
    Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In: MobiCom ’00: Proceedings of the 6th annual international conference on Mobile computing and networking, pp. 243–254. CM, New York, NY, USA (2000)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Lakshminarayanan, K., Rao, A., Stoica, I., Shenker, S.: Flexible and robust large scale multicast using i3. Tech. Rep. CS-02, University of California, Berkeley (2002)Google Scholar
  14. 14.
    Lakshminarayanan, K., Stoica, I., Wehrle, K.: Support for service composition in i3. In: MULTIMEDIA ’04: Proceedings of the 12th annual ACM international conference on Multimedia, pp. 108–111. ACM, New York, NY, USA (2004)CrossRefGoogle Scholar
  15. 15.
    Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the butterfly. In: Proceedings of the 21st annual ACM symposium on Principles of distributed computing (2002)Google Scholar
  16. 16.
    Maymounkov, P., Mazires, D.: Kademlia: A peer-to-peer information system based on the xor metric. In: Proceedings of 1st International Workshop on Peer-to-Peer Systems (IPTPS), pp. 53–65 (2002)Google Scholar
  17. 17.
    Mehyar, M., Spanos, D., Pongsajapan, J., Low, S.H., Murray, R.M.: Asynchronous distributed averaging on communication networks. IEEE/ACM Transactions on Networking 15(3), 512–520 (2007)CrossRefGoogle Scholar
  18. 18.
    Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA ’99. Second IEEE Workshop on pp. 90–100 (1999)Google Scholar
  19. 19.
    Das, S.M., Hu, Y.: Ekta: An efficient DHT substrate for distributed applications in mobile ad hoc networks. In: Proc. of IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), pp. 163–173. IEEE (2004)Google Scholar
  20. 20.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 161–172. ACM, New York, NY, USA (2001)CrossRefGoogle Scholar
  21. 21.
    Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R., Yin, L., Yu, F.: Data-centric storage in sensornets with GHT, a geographic hash table. Mobile Networks and Applications 8(4), 427–442 (2003)CrossRefGoogle Scholar
  22. 22.
    Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Middleware ’01: Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg, pp. 329–350. Springer-Verlag (2001)Google Scholar
  23. 23.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 149–160. ACM, New York, NY, USA (2001)CrossRefGoogle Scholar
  24. 24.
    Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrishnan, H.C.: Chord: A scalable peer-to-peer lookup service for internet applications. Tech. Rep. TR819, Laboratory for Compuer Science, Massachuseets Institute of Technology (2001)Google Scholar
  25. 25.
  26. 26.
    Xu, J.: On the fundamental tradeoffs between routing table size and network diameter in peer-to-peer networks. INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE 3, 2177–2187 (2003)Google Scholar
  27. 27.
    Yiu, W.P., Jin, X., Chan, S.H.: VMesh: Distributed segment storage for peer-to-peer interactive video streaming. Selected Areas in Communications, IEEE Journal 25(9), 1717–1731 (2007)CrossRefGoogle Scholar
  28. 28.
    Zahn, T., Schiller, J.: MADPastry: A DHT substrate for practicably sized MANETs. In: Proc. of IEEE Workshop on Applications and Services in Wireless Networks (ASWN) (2005)Google Scholar
  29. 29.
    Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A., Kubiatowicz, J.: Tapestry: a resilient global-scale overlay for service deployment. Selected Areas in Communications, IEEE Journal 22(1), 41–53 (2004)CrossRefGoogle Scholar
  30. 30.
    Zhuang, S., Lai, K., Stoica, I., Katz, R., Shenker, S.: Host mobility using an internet indirection infrastructure. Wireless Networks 11(6), 741–756 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA
  2. 2.Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations