Advertisement

Insulin Resistance in PCOS

  • Evanthia Diamanti-KandarakisEmail author
  • Charikleia D. Christakou
Chapter

Insulin resistance refers to the state, wherein insulin action is insufficient to accomplish the metabolic demands of peripheral tissues, despite the increased amounts of insulin secreted in the circulation. However, this is only an approximate description of this disorder. Insulin resistance encompasses an elaborate clinical, pathophysiologic, and molecular spectrum, and therefore, a well-established definition remains elusive.

Keywords

Insulin Resistance Granulosa Cell Oral Glucose Tolerance Test PCOS Patient PCOS Woman 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997;18:774–800PubMedGoogle Scholar
  2. 2.
    Poretsky L, Cataldo N, Rosenwaks Z, Giudice L. The insulin-related ovarian regulatory system in health and disease. Endocr Rev 1999;20: 535–82PubMedGoogle Scholar
  3. 3.
    Diamanti-Kandarakis E. and Papavasiliou A. Molecular mechanisms of insulin resistance in polycystic ovary syndrome Trends Mol Med 2006;12:324–32Google Scholar
  4. 4.
    Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 1989; 38:1165–74PubMedGoogle Scholar
  5. 5.
    Dunaif A, Finegood DT. β-Cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. J Clin Endocrinol Metab 1996; 81:942–47PubMedGoogle Scholar
  6. 6.
    Diamanti-Kandarakis E, Mitrakou A, Hennes MM, Platanissiotis D, Kaklas N, Spina J, Georgiadou E, Hoffmann RG, Kissebah AH, Raptis S. Insulin sensitivity and antiandrogenic therapy in women with polycystic ovary syndrome. Metabolism 1995; 44(4):525–31PubMedGoogle Scholar
  7. 7.
    Ducluzeau P, Cousin P, Malvoisin E, Bornet H, Vidal H, Laville M, Pugeat M. Glucose-to-Insulin Ratio Rather than Sex Hormone-Binding Globulin and Adiponectin Levels Is the Best Predictor of Insulin Resistance in Nonobese Women with Polycystic Ovary Syndrome J Clin Endocrinol Metab 2003; 88(8):3626–31Google Scholar
  8. 8.
    Fulgeshu A, Angioni S, Portoghese E, Milano F, Batetta B, Paoletti A, Melis G. Failure of the homeostatic model assessment calculation score for detecting metabolic deterioration in young patients with polycystic ovary syndrome Fertil Steril 2006; 86:398–404.Google Scholar
  9. 9.
    Palomba S, Falbo A, Russo T, Manguso F, Tolino A, Zullo F, De Feo P, Orio F Jr. Insulin sensitivity after metformin suspension in normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab 2007; 92(8):3128–35PubMedGoogle Scholar
  10. 10.
    Healds A, Whitehead S, Anderson S, Cruickshank K, Riste L, Laing I, Rudenski A, Buckler H. Screening for insulin resistance in women with polycystic ovarian Syndrome Gyn Endocrinol 2005; 20(2): 84–91Google Scholar
  11. 11.
    Micic D, Sumarac-Dumanovic M, Kendereski A, Cvijovic G, Zoric S, Pejkovic D, Micic J, Milic N, Dieguez C, Casanueva F. Total ghrelin levels during acute insulin infusion in patients with polycystic ovary syndrome J Endocrinol Invest 2007; 30: 820–27Google Scholar
  12. 12.
    Legro RS, Finegood D, Dunaif A. A fasting glucose to insulin ratio is a useful measure of insulin sensitivity in women with polycystic ovary syndrome J Clin Endocrinol Metab 1998; 83:2694–98Google Scholar
  13. 13.
    Jayagopal V, Kilpatrick ES, Holding PE, Jennings PE, Hepburn DA, Atkin SL. The biological variation of insulin resistance in polycystic ovarian syndrome J Clin Endocrinol Metab 2002; 87:1560–62Google Scholar
  14. 14.
    Park KH, Kim JY, Ahn CW, Song YD, Lim SK, Lee HC. Polycystic ovarian syndrome (PCOS) and insulin resistance Int J Gynecol Obstetr 2001; 74(3):261–67Google Scholar
  15. 15.
    de Paula Martins W, Santana LF, Nastri CO, Ferriani RA, de Sa MF, Dos Reis RM. Agreement among insulin sensitivity indexes on the diagnosis of insulin resistance in polycystic ovary syndrome and ovulatory women Eur J Obstet Gynecol Reprod Biol 2007; 133(2):203–7Google Scholar
  16. 16.
    Kowalska I, Straczkowski M, Nikolajuk A, Adamska A, Karczewska-Kupczewska M, Otziomek E, Wolczynski S and Gorska M Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome Hum Reprod 2007; 22(7):1824–29Google Scholar
  17. 17.
    Vrbikova J, Bendlova B, Hill M, Vankova M, Vondra K, Starka L. Insulin sensitivity and beta-cell function in women with polycystic ovary syndrome. Diabetes Care 2002; 25:1217–22PubMedGoogle Scholar
  18. 18.
    Ovesen P, Moller J, Ingerslev HJ, Jorgensen JO, Mengel A, Schmitz O, Alberti KG, Moller N. Normal basal and insulin-stimulated fuel metabolism in lean women with the polycystic ovary syndrome. J Clin Endocrinol Metab 1993; 77(6): 1636–40PubMedGoogle Scholar
  19. 19.
    Vrbikova J, Cibula D, Dvorakova K, Stanicka S, Sindelka G, Hill M, Fanta M, Vondra K, Skrha J. Insulin sensitivity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89:2942–45PubMedGoogle Scholar
  20. 20.
    Ciampelli M, Fulghesu AM, Cucinelli F, Pavone V, Caruso A, Mancuso S, Lanzone A Heterogeneity in β-cell activity, hepatic insulin clearance and peripheral insulin sensitivity in women with polycystic ovary syndrome. Hum Reprod 1997; 12:1897–1901PubMedGoogle Scholar
  21. 21.
    Gennarelli G, Rovei V, Novi R, Holte J, Bongioanni F, Revelli A, Pacini G, Cavallo-Perin P, Massobrio M. Preserved insulin sensitivity and β-cell activity, but decreased glucose effectiveness in normal-weight women with the polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90:3381–86PubMedGoogle Scholar
  22. 22.
    Vigil P, Contreras P, Alvarado J, Godoy A, Salgado A, Cortes M. Evidence of subpopulations with different levels of insulin resistance in women with polycystic ovary syndrome Hum Reprod 2007; 22:2974–80Google Scholar
  23. 23.
    Ciampelli M, Leoni F, Cucinelli F, et al. Assessment of insulin sensitivity from measurements in the fasting state and during an oral glucose tolerance test in polycystic ovary syndrome and menopausal patients. J Clin Endocrinol Metab 2005; 90: 1398–406PubMedGoogle Scholar
  24. 24.
    Carmina E, Lobo R. Use of fasting blood to assess the prevalence of insulin resistance in women with polycystic ovary syndrome. Fertil Steril 2004; 82:661–65PubMedGoogle Scholar
  25. 25.
    DeUgarte CM, Bartolucci AA, Azziz R. Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil Steril 2005; 83(5):1454–60PubMedGoogle Scholar
  26. 26.
    Carmina E, Longo RA, Rini GB, Lobo RA. Phenotypic variation in hyperandrogenic women influences the finding of abnormal metabolic and cardiovascular risk parameters. J Clin Endocrinol Metabol 2005; 90:2545–49Google Scholar
  27. 27.
    McLaughlin T, Allison G, Abbasi F, Lamendola C, Reaven G. Prevalence of insulin resistance and associated cardiovascular disease risk factors among normal weight, overweight, and obese individuals. Metabolism 2004; 53(4):495–99PubMedGoogle Scholar
  28. 28.
    Morin-Papunen LC, Vauhkonen I, Koivunen RM, Ruokonen A, Tapanainen JS. Insulin sensitivity, insulin secretion, and metabolic and hormonal parameters in healthy women and women with polycystic ovarian syndrome. Hum Reprod 2000; 15(6):1266–74PubMedGoogle Scholar
  29. 29.
    Zawadski JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Polycystic Ovary Syndrome (Dunaif, A. et al., eds; Hershman, S.M., series ed.), Current Issues in Endocrinology and Metabolism, Blackwell Scientific Publications, Boston, 1992Google Scholar
  30. 30.
    The Rotterdam ESHRE ASRM-sponsored PCOS Consensus Workshop Group Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004; 81:19–25Google Scholar
  31. 31.
    Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, Witchel SF, Androgen Excess Society Position statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metab 2006; 91:4237–45PubMedGoogle Scholar
  32. 32.
    Diamanti-Kandarakis E, Panidis D. Unravelling the phenotypic map of polycystic ovaries syndrome (PCOS): a prospective study of 634 women with PCOS. Clin Endocrinol 2007; 67:735–42Google Scholar
  33. 33.
    Barber TM, Wass JA, McCarthy MI, Franks S. Metabolic characteristics of women with polycystic ovaries and oligo-amenorrhoea but normal androgen levels: implications for the management of polycystic ovary syndrome. Clin Endocrinol (Oxf) 2007; 66(4):513–17Google Scholar
  34. 34.
    Amato MC, Galluzzo A, Finocchiaro S, Criscimanna A, Giordano C. The evaluation of metabolic parameters and insulin sensitivity for a more robust diagnosis of the polycystic ovary syndrome. Clin Endocrinol (Oxf) 2008; 69(1):52–60Google Scholar
  35. 35.
    Norman RJ, Davies MJ, Lord J, Moran LJ. The role of lifestyle modification in polycystic ovary syndrome. Trends Endocrinol Metab 2002; 13(6):251–57PubMedGoogle Scholar
  36. 36.
    Yildiz BO, Knochenhauer ES, Azziz R. Impact of obesity on the risk for polycystic ovary syndrome. J Clin Endocrinol Metab 2008; 93(1):162–8PubMedGoogle Scholar
  37. 37.
    Escobar-Morreale H, San Millan J. Abdominal adiposity and the polycystic ovary syndrome Trends in Endocrinol Metabol 2007; 18(7):266–72Google Scholar
  38. 38.
    Lord J, Thomas R, Fox B, Acharya U, Wilkin T The central issue? Visceral fat mass is a good marker of insulin resistance and metabolic disturbance in women with polycystic ovary syndrome. BJOG 2006; 113(10):1203–9PubMedGoogle Scholar
  39. 39.
    Kahn S, Hull R, Utzschneider K. Mechanisms linking obesity to insulin resistance and type 2 diabetes Nature 2006; 444(14):840–46Google Scholar
  40. 40.
    Carmina E, Legro RS, Stamets K, Lowell J, Lobo RA. Difference in body weight between American and Italian women with polycystic ovary syndrome. Human Reprod 2003; 11:2289–93Google Scholar
  41. 41.
    Vlassara H. Advanced glycation in health and disease: role of the modern environment Ann NY Acad Sci 2005; 1043: 452–60Google Scholar
  42. 42.
    Diamanti-Kandarakis E, Piperi C, Kalofoutis A and Creatsas G Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome Clin Endocrinol 2005; 62:37–43Google Scholar
  43. 43.
    Diamanti-Kandarakis E, Katsikis I, Piperi C, Kandaraki E, Piouka A, Papavassiliou AG, Panidis D. Increased serum Advanced Glycation End products is a distinct finding in lean women with PCOS. Clin Endocrinol (Oxf) 2008; 69(4): 634–41Google Scholar
  44. 44.
    Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab 1998; 83(9):3078–82PubMedGoogle Scholar
  45. 45.
    Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004; 89:2745–49PubMedGoogle Scholar
  46. 46.
    Diamanti Kandarakis E, Piperi C, Spina J, Argyrakopoulou G, Papanastasiou L, Bergiele A, Panidis D. Polycystic ovary syndrome: the influence of environmental and genetic factors. Hormones (Athens) 2006; 5:17–34Google Scholar
  47. 47.
    Sir Petermann T, Maliqueo M, Codner E, Echiburϊ B, Crisosto N, Pιrez V, Pιrez-Bravo F, Cassorla F. Early metabolic derangements in daughters of women with PCOS J Clin Endocrin Metab 2007; 92(12):4637–42Google Scholar
  48. 48.
    Diamanti-Kandarakis E, Piperi C. Genetics of polycystic ovary syndrome: searching for the way out of the labyrinth. Hum Reprod Update 2005; 11: 631–43PubMedGoogle Scholar
  49. 49.
    Escobar-Morreale H, Luque-Ramirez M, San Millan J. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev 2005; 26F:251–82PubMedGoogle Scholar
  50. 50.
    Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update. 2005; 11(4):357–74PubMedGoogle Scholar
  51. 51.
    Kahsar-Miller MD, Nixon C, Boots LR, Go RC, Azziz R. Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS. Fertil Steril 2001; 75(1):53–8PubMedGoogle Scholar
  52. 52.
    Diamanti-Kandarakis E, Kouli CR, Bergiele AT, Filandra FA, Tsianateli TC, Spina GG, Zapanti ED, Bartzis MI. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab 1999; 84:4006–11PubMedGoogle Scholar
  53. 53.
    Ehrmann D, Kasza K, Azziz R, Legro R, Ghazzi M. Effects of Race and Family History of Type 2 Diabetes on Metabolic Status of Women with Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2005; 90(1):66–71PubMedGoogle Scholar
  54. 54.
    Sir-Petermann T, Angel B, Maliqueo M, Carvajal F, Santos JL, Perez-Bravo F. Prevalence of type II diabetes mellitus and insulin resistance in parents of women with polycystic ovary syndrome. Diabetologia 2002; 45:959–64PubMedGoogle Scholar
  55. 55.
    Yildiz BO, Yarali H, Oguz H, Bayraktar M. Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003; 88:2031–36PubMedGoogle Scholar
  56. 56.
    Vrbíková J, Grimmichová T, Dvoráková K, Hill M, Stanická S, Vondra K. Family history of diabetes mellitus determines insulin sensitivity and beta cell function in polycystic ovary syndrome. Physiol Res 2008; 57(4):547–53Google Scholar
  57. 57.
    Jackson S, Bagstaff S, Lynn S, Yeaman S, Turnbull D, Walker M. Decreased Insulin Responsiveness of Glucose Uptake in Cultured Human Skeletal Muscle Cells From Insulin-Resistant Nondiabetic Relatives of Type 2 Diabetic Families. Diabetes 2000; 49:1169–77PubMedGoogle Scholar
  58. 58.
    Axelsen M, Smith U, Eriksson JW, Taskinen M-R, Jansson P-A. Postprandial hypertriglyceridemia and insulin resistance in normoglycemic first-degree relatives of patients with type 2 diabetes. Ann Intern Med 1999; 131:27–31PubMedGoogle Scholar
  59. 59.
    Yilmaz M, Bukan N, Ersoy R, Karakoc A, Yetkin I, Ayvaz G, et al. Glucose intolerance, insulin resistance and cardiovascular risk factors in first degree relatives of women with polycystic ovary syndrome. Hum Reprod 2005; 20:2411–20.Google Scholar
  60. 60.
    Unlühızarcı K, Özocak M, Tanrıverdi F, Atmaca H and Kelestimur F. Investigation of hypothalamo-pituitary-gonadal axis and glucose intolerance among the first-degree female relatives of women with polycystic ovary syndrome Fertil Steril 2007; 87:1377–82Google Scholar
  61. 61.
    Diamanti-Kandarakis E, Alexandraki K, Bergiele A. Presence of metabolic risk factors in non-obese PCOS sisters: Evidence of heritability of insulin resistance. J Endocrinol Invest. 2004; 27:931–36PubMedGoogle Scholar
  62. 62.
    Dunaif A, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest 1995; 96:801–10PubMedGoogle Scholar
  63. 63.
    Colilla S, Cox NJ, Ehrmann DA. Heritability of insulin secretion and insulin action in women with polycystic ovary syndrome and their first degree relatives. J Clin Endocrinol Metab 2001; 86:2027–31PubMedGoogle Scholar
  64. 64.
    Salley K, Wickham E, Cheang K, Essah P, Karjane N, Nestler J. Position statement: Glucose Intolerance in Polycystic Ovary Syndrome—A Position Statement of the Androgen Excess Society J Clin Endocrinol Metab 2007; 92:4546–56Google Scholar
  65. 65.
    Ehrmann DA, Sturis J, Byrne MM, Karrison T, Rosenfield RL, Polonksy KS. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 96:520–27PubMedGoogle Scholar
  66. 66.
    Altuntas Y, Bilir M, Ucak S, Gundogdu S. Reactive hypoglycemia in lean young women with PCOS and correlations with insulin sensitivity and with beta cell function. Eur J Obstet Gynecol Reprod Biol. 2005; 119:198–205PubMedGoogle Scholar
  67. 67.
    Samaras K, McElduff A, Twigg S, Proietto J, Prins J, Welborn T, Zimmet P, Chisholm D, Campbell L Insulin levels in insulin resistance: phantom of the metabolic opera? Med J Aust 2006; 185(3):159–61PubMedGoogle Scholar
  68. 68.
    American Diabetes Association Consensus Development Conference on Insulin Resistance; 5–6 November 1997. Diabetes Care 1998; 21:310–14Google Scholar
  69. 69.
    Cibula D, Skrha J, Hill M, Fanta M, Haaková L, VrbIková J, Zivný J. Prediction of insulin sensitivity in nonobese women with polycystic ovary syndrome. J Clin Endocrinol Metab 2002; 87(12):5821–25PubMedGoogle Scholar
  70. 70.
    Rabasa-Lhoret R, Bastard JP, Jan V, Ducluzeau PH, Andreelli F, Guebre F, Bruzeau J, Louche-Pellissier C, MaItrepierre C, Peyrat J, Chagné J, Vidal H, Laville M. Modified quantitative insulin sensitivity check index is better correlated to hyperinsulinemic glucose clamp than other fasting-based index of insulin sensitivity in different insulin-resistant states. J Clin Endocrinol Metab 2003; 88(10):4917–23PubMedGoogle Scholar
  71. 71.
    Skrha J, Haas T, Sindelka G, Prázný M, Widimský J, Cibula D, Svacina S. Comparison of the insulin action parameters from hyperinsulinemic clamps with homeostasis model assessment and QUICKI indexes in subjects with different endocrine disorders. J Clin Endocrinol Metab 2004; 89(1):135–41PubMedGoogle Scholar
  72. 72.
    Diamanti-Kandarakis E, Kouli C, Alexandraki K, Spina G. Failure of mathematical indices to accurately assess insulin resistance in lean, overweight, or obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89:1273–76PubMedGoogle Scholar
  73. 73.
    Marcovina S, Bowsher RR, Miller WG, Staten M, Myers G, Caudill SP, Campbell SE, Steffes MW. For the insulin standardization workgroup standardization of insulin immunoassays: report of the American Diabetes Association workgroup. Clinical Chemistry 2007; 53:711–716PubMedGoogle Scholar
  74. 74.
    Stumvoll M, Mitrakou A, Pimenta W, Jenssen T, Yki-Jarvinen H, Van Haeften T, Renn W, Gerich J. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 2000; 23(3):295–301PubMedGoogle Scholar
  75. 75.
    Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22:1462–70PubMedGoogle Scholar
  76. 76.
    Cagnacci A, Arangino S, Renzi A, Cagnacci P, Volpe A. Insulin sensitivity in women: a comparison among values derived from intravenous glucose tolerance tests with different sampling frequency, oral glucose tolerance test or fasting Eur J Endocrinol 2001; 145:281–87PubMedGoogle Scholar
  77. 77.
    Quon MJ. Limitations of the fasting glucose to insulin ratio as an index of insulin sensitivity. J Clin Endocrinol Metab 2001; 86:4615–17PubMedGoogle Scholar
  78. 78.
    Abassi F, Reaven GM. Evaluation of the quantitative insulin sensitivity check index as an estimate of insulin sensitivity in humans. Metabolism 2002; 51:235–37Google Scholar
  79. 79.
    Bacha F, Saad R, Gungor N, Janosky J, Arslanian SA. Obesity, regional fat distribution, and syndrome X in obese black versus white adolescents: race differential in diabetogenic and atherogenic risk factors. J Clin Endocrinol Metab 2003; 88(6): 2534–40PubMedGoogle Scholar
  80. 80.
    Ehtisham S, Crabtree N, Clark P, Shaw N, Barrett T. Ethnic Differences in Insulin Resistance and Body Composition in United Kingdom Adolescents J Clin Endocrinol Metab 2005; 90(7):3963–69Google Scholar
  81. 81.
    Whincup PH, Gilg JA, Papacosta O, Seymour C, Miller GJ, Alberti KG, Cook DG. Early evidence of ethnic differences in cardiovascular risk: cross sectional comparison of British South Asian and white children. BMJ 2002; 324:635PubMedGoogle Scholar
  82. 82.
    Wijeyaratne CN, Balen AH, Barth JH, Belchetz PE. Clinical manifestations and insulin resistance (IR) in polycystic ovary syndrome (PCOS) among South Asians and Caucasians: is there a difference? Clin Endocrinol 2002; 57:343–50Google Scholar
  83. 83.
    Kauffman VM, Baker P, Dimarino T, Gimpel VD. Castracane, Polycystic ovarian syndrome and insulin resistance in white and Mexican American women: a comparison of two distinct populations, Am J Obstet Gynecol 2002; 187:1362–69PubMedGoogle Scholar
  84. 84.
    Dunaif A, Sorbara L, Delson R, Green G. Ethnicity and polycystic ovary syndrome are associated with independent and additive decreases in insulin action in Caribbean-Hispanic women. Diabetes 1993; 42:1462–68PubMedGoogle Scholar
  85. 85.
    Willis D, Franks S. Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-I insulin-like growth factor receptor. J Clin Endocrinol Metab 1995; 80:3788–90PubMedGoogle Scholar
  86. 86.
    Samoto T, Maruo T, Ladines-Llave CA, Matsuo H, Deguchi J, Barnea ER, Mochizuki M. Insulin receptor expression in follicular and stromal compartments of the human ovary over the course of follicular growth, regression and atresia. Endocr J 1993; 40:715–26PubMedGoogle Scholar
  87. 87.
    Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev 2007; 28(5):463–91PubMedGoogle Scholar
  88. 88.
    Mlinar B, Marc J, Janež A, Pfeifer M. Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta 2007; 375:20–35PubMedGoogle Scholar
  89. 89.
    Buchs A, Chagag P, Weiss M, Kish E, Levinson R, Aharoni D, Rapoport MJ. Normal p21Ras/MAP kinase pathway expression and function in PBMC from patients with polycystic ovary disease Int J Mol Med 2004; 13:595–99Google Scholar
  90. 90.
    Ciaraldi TP, Morales AJ, Hickman MG, Odom-Ford R, Yen SS, Olefsky JM. Lack of insulin resistance in fibroblasts from subjects with polycystic ovary syndrome. Metabolism 1998; 47:940–46PubMedGoogle Scholar
  91. 91.
    Poretsky L. Commentary: polycystic ovary syndrome – increased or preserved ovarian sensitivity to insulin? J Clin Endocrinol Metab 2006; 91:2859–60PubMedGoogle Scholar
  92. 92.
    Book CB, Dunaif A. Selective insulin resistance in the polycystic ovary syndrome. J Clin Endocrinol Metab 1999; 84: 3110–16PubMedGoogle Scholar
  93. 93.
    Venkatesan AM, Dunaif A, Corbould A. Insulin resistance in polycystic ovary syndrome: progress and paradoxes. Recent Prog Horm Res 2001; 56:295–308PubMedGoogle Scholar
  94. 94.
    Rice S, Christoforidis N, Gadd C, Nikolaou D, Seyani L, Donaldson A, Margara R, Hardy K, Franks S. Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries Hum. Reprod 2005; 20(2):373–81Google Scholar
  95. 95.
    Dunaif A, Wu X, Lee A, Diamanti-Kandarakis E. Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab 2001; 281:E392–E399PubMedGoogle Scholar
  96. 96.
    Corbould A, Kim Y-B, Youngren JF, Pender C, Kahn BB, Lee A, Dunaif A. Insulin resistance in the skeletal muscle of women with PCOS involves intrinsic and acquired defects in insulin signaling. Am J Physiol Endocrinol Metab 2005; 288: E1047–E1054PubMedGoogle Scholar
  97. 97.
    Corbould A, Zhao H, Mirzoeva S, Aird F, Dunaif A. Enhanced mitogenic signaling in skeletal muscle of women with polycystic ovary syndrome. Diabetes 2006; 55:751–59PubMedGoogle Scholar
  98. 98.
    Skov V, Glintborg D, Knudsen S, Jensen T, Kruse T, Tan Q, Brusgaard K, Beck-Nielsen H, Højlund K. Reduced Expression of Nuclear-Encoded Genes Involved in Mitochondrial Oxidative Metabolism in Skeletal Muscle of Insulin-Resistant Women With Polycystic Ovary Syndrome. Diabetes 2007; 56:2349–55PubMedGoogle Scholar
  99. 99.
    Orio F Jr, Giallauria F, Palomba S, Cascella T, Manguso F, Vuolo L, Russo T, Tolino A, Lombardi G, Colao A, Vigorito C. Cardiopulmonary impairment in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 2006; 91:2967–71PubMedGoogle Scholar
  100. 100.
    Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34:267–73PubMedGoogle Scholar
  101. 101.
    Ciaraldi TP, el-Roeiy A, Madar Z, Reichart D, Olefsky JM, Yen SS. Cellular mechanisms of insulin resistance in polycystic ovarian syndrome. J ClinEndocrinol Metab 1992; 75:577–583Google Scholar
  102. 102.
    Dunaif A, Segal KR, Shelley DR, Green G, Dobrjansky A, Licholai T. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes 1992; 41:1257–1266PubMedGoogle Scholar
  103. 103.
    Marsden PJ, Murdoch A, Taylor R Severe impairment of insulin action in adipocytes from amenorrheic subjects with polycystic ovary syndrome. Metabolism 1994; 43(12):1536–42PubMedGoogle Scholar
  104. 104.
    Lystedt E, Westergren H, Brynhildsen J, Lindh-Astrand L, Gustavsson J, Nystrom F, Hammar M, Stralfors P. Subcutaneous adipocytes from obese hyperinsulinemic women with polycystic ovary syndrome exhibit normal insulin sensitivity but reduced maximal insulin responsiveness. Eur J Endocrinol 2005; 153:831–35PubMedGoogle Scholar
  105. 105.
    Mor E, Zograbyan A, Saadat P, Bayrak A, Tourgeman D, Zhang C, Stanczyk F, Paulson R. The insulin resistant subphenotype of polycystic ovary syndrome: clinical parameters and pathogenesis Am J Obstet Gynecol 2004; 190:1654–60Google Scholar
  106. 106.
    Goodarzi MO, Antoine HJ, Pall M, Cui J, Guo X, Azziz R. Preliminary evidence of glycogen synthase kinase 3 beta as a genetic determinant of the polycystic ovary syndrome Fertil Steril 2007; 87:1473–76Google Scholar
  107. 107.
    Rosenbaum D, Haber RS, Dunaif A. Insulin resistance in PCOS:decreased expression of GLUT-4 glucose transporters in adipocytes. Am J Physiol 1993; 264(2 Pt 1):E197–202PubMedGoogle Scholar
  108. 108.
    Seow KM, Juan CC, Hsu YP, Hwang JL, Huang LW, Ho LT. Amelioration of insulin resistance in women with PCOS via reduced insulin receptor substrate-1 Ser312 phosphorylation following laparoscopic ovarian electrocautery Hum Reprod 2007; 22(4):1003–10Google Scholar
  109. 109.
    Corton M, Botella-Carretero JI, Benguría A, Villuendas G, Zaballos A, San Millán JL, Escobar-Morreale HF, Peral B. Differential gene expression profile in omental adipose tissue in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2007; 92:328–337PubMedGoogle Scholar
  110. 110.
    Rosenfield R. Identifying Children at Risk for Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2007; 92:787–96PubMedGoogle Scholar
  111. 111.
    Altuntas Y, Bilir M, Ozturk B. Comparison of various simple insulin sensitivity and β-cell function indices in lean hyperandrogenemic and normoandrogenemic young hirsute women. Fertil Steril 2003; 80:133–42PubMedGoogle Scholar
  112. 112.
    Pasquali R, Gambineri A, Pagotto U. The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG 2006; 113:1148–1159.PubMedGoogle Scholar
  113. 113.
    Baillargeon JP, Carpentier A. Role of insulin in the hyperandrogenemia of lean women with polycystic ovary syndrome and normal insulin sensitivity. Fertil Steril 2007; 88:886–93PubMedGoogle Scholar
  114. 114.
    Codner E, Escobar-Morreale HF. Hyperandrogenism and Polycystic Ovary Syndrome (PCOS) in Women with Type 1 Diabetes Mellitus. J Clin Endocrin Metab 2007; 92(4):1209–16Google Scholar
  115. 115.
    Huber-Buchholz MM, Carey DGP, Norman RJ. Restoration of reproductive potential by lifestyle modification in obese polycystic ovary syndrome: role of insulin sensitivity and luteinizing hormone. J Clin Endocrinol Metab 1999; 84:1470–74PubMedGoogle Scholar
  116. 116.
    Kiddy DS, Hamilton-Fairley D, Bush A, Short F, Anyaoku V, Reed MJ, Franks S. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol 1992; 36:105–11Google Scholar
  117. 117.
    Nestler JE, Jakubowicz DJ. Decreases in ovarian cytochrome p450c17a activity and serum free testosterone after reduction ofinsulin secretion in polycystic ovary syndrome. N Engl J Med 1996; 335:617–23PubMedGoogle Scholar
  118. 118.
    Diamanti-Kandarakis E, Kouli C, Tsianateli T, Bergiele A. Therapeutic effects of metformin on insulin resistance and hyperandrogenism in polycystic ovary syndrome. Eur J Endocrinol 1998; 138:269–74PubMedGoogle Scholar
  119. 119.
    Ryan CS, Nestler JE. Insulin-Sensitizing Drugs for the Treatment of Infertility in Polycystic Ovary Syndrome In Insulin resistance and polycystic ovarian syndrome: pathogenesis, evaluation and treatment. (Diamanti-Kandarakis, E. et al., eds), pp. 433–4747, Insulin Resistance and Polycystic Ovarian Syndrome:Edited by Evanthia Diamanti-Kandarakis, John Nestler, Dimitrios Panidis, Renato Pasquali Humana Press 2007Google Scholar
  120. 120.
    Ciotta L, Calogero AE, Farina M, De Leo V, la Marca A, Cianci A. Clinical, endocrine and metabolic effects of acarbose, an α-glucosidase inhibitor, in PCOS patients with increased insulin response and normal glucose tolerance. Hum Reprod 2001; 16:2066–72PubMedGoogle Scholar
  121. 121.
    Attia GR, Rainey WE, Carr BR. Metformin directly inhibits androgen production in human thecal cells. Fertil Steril 2001; 76:517–24PubMedGoogle Scholar
  122. 122.
    Seto-Young D, Paliou M, Schlosser J, Avtanski D, Park A, Patel P, Holcomb K, Chang P, Poretsky L. Direct thiazolidinedione action in the human ovary: insulin-independent and insulin-sensitizing effects on steroidogenesis and insulin-like growth factor binding protein-1 production. J Clin Endocrinol Metab 2005; 90:6099–105PubMedGoogle Scholar
  123. 123.
    Nestler JE, Jakubowicz DJ, de Vargas AF, Brik C, Quintero N, Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 1998; 83:2001–5PubMedGoogle Scholar
  124. 124.
    Zhang G, Garmey JC, Veldhuis JD. Interactive stimulation by luteinizing hormone and insulin of the steroidogenic acute regulatory (StAR) protein and 17a-hydroxylase/17,20-lyase (CYP17) genes in porcine theca cells. Endocrinology 2000; 141:2735–42PubMedGoogle Scholar
  125. 125.
    Munir I, Yen HW, Geller DH, Torbati D, Bierden R, Weitsman S, Agarwal S, Magoffin D. Insulin augmentation of 17-α hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signa lregulated kinase-1/2 in human ovarian theca cells. Endocrinology 2004; 145:175–83PubMedGoogle Scholar
  126. 126.
    Carvalho CRO, Carvalheira JB, Lima MH, Zimmerman SF, Caperuto LC, Amanso A, Gasparetti AL, Meneghetti V, Zimmerman LF, Velloso LA et al. Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology 2003; 144: 38–47Google Scholar
  127. 127.
    Lima M, Souza L, Caperuto L, Bevilacqua E, Gasparetti A, Zanuto R, Saad M, CarvalhoC. Up-regulation of the phosphatidylinositol 3-kinase/protein kinase B pathway in the ovary of rats by chronic treatment with hCG and insulin. J Endocrinol 2006; 190:451–59PubMedGoogle Scholar
  128. 128.
    Garzo VG, Dorrington JH. Aromatase activity in human granulosa cells during follicular development and the modulation by follicle stimulating hormone and insulin. Am J Obstet Gynecol 1984; 148:657–62PubMedGoogle Scholar
  129. 129.
    Greisen S, Ledet T, Ovesen P. Effects of androstenedione, insulin and LH on steroidogenesis in human granulosa luteal cells. Hum Reprod 2001; 16:2061–65PubMedGoogle Scholar
  130. 130.
    McGee E, Sawetawan C, Bird I, Rainey WE, Carr BR. The effects of insulin on 3 b-hydroxysteroid dehydrogenase expression in human luteinized granulosa cells. J Soc Gynecol Investig 1995; 2:535–41PubMedGoogle Scholar
  131. 131.
    Sekar N, Garmey JC, Veldhuis JD. Mechanisms underlying the steroidogenic synergy of insulin and luteinizing hormone in porcine granulosa cells: joint amplification of pivotal sterol-regulatory genes encoding the low-density lipoprotein (LDL) receptor, steroidogenic acute regulatory (stAR) protein and cytochrome P450 side-chain cleavage (P450scc) enzyme. Mol Cell Endocrinol 2000; 159:25–35PubMedGoogle Scholar
  132. 132.
    Wu XK, Sallinen K, Anttila L, Makinen M, Luo C, Pollanen P, and Erkkola, R Expression of insulin-receptor substrate-1and -2 in ovaries from women with insulin resistance and from controls. Fertil Steril 2000; 74:564–72PubMedGoogle Scholar
  133. 133.
    Franks S, Gilling-Smith C, Watson H, Willis D. Insulin action in the normal and polycystic ovary. Endocrinol Metab Clin North Am 1999; 28:361–78PubMedGoogle Scholar
  134. 134.
    Willis D, Mason H, Gilling-Smith C, Franks S. Modulation by insulin of follicle-stimulating hormone and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J Clin Endocrinol Metab 1996; 81:302–9PubMedGoogle Scholar
  135. 135.
    Baillargeon JP, Nestler JE. Polycystic ovary syndrome: a syndrome of ovarian hypersensitivity to insulin? J Clin Endocrinol Metab 2006; 91:22–4PubMedGoogle Scholar
  136. 136.
    Willis, D. Watson H, Mason H, Galea R, Brincat M, Franks S Premature response to LH of granulosa cells from anovulatory women with polycystic ovaries: relevance to mechanisms of anovulation. J Clin Endocrinol Metab 1998; 83: 3984–91PubMedGoogle Scholar
  137. 137.
    Jakimiuk AJ, Weitsman SR, Navab A, Magoffin DA. Luteinizing hormone receptor, steroidogenesis acute regulatory protein, and steroidogenic enzyme messenger ribonucleic acids are overexpressed in thecal and granulosa cells from polycystic ovaries. J Clin Endocrinol Metab 2001; 86:1318–23PubMedGoogle Scholar
  138. 138.
    Dumesic DA, Schramm RD, Peterson E, Paprocki AM, Zhou R, Abbott DH. Impaired developmental competence of oocytes in adult prenatally androgenized female rhesus monkeys undergoing gonadotropin stimulation for in vitro fertilization. J Clin Endocrinol Metab 2002; 87:1111–19PubMedGoogle Scholar
  139. 139.
    Wu XK, Zhou SY, Liu JX, Pollanen P, Sallinen K, Makinen M, Erkkola R. Selective ovary resistance to insulin signaling in women with polycystic ovary syndrome. Fertil Steril 2003; 80:954–65PubMedGoogle Scholar
  140. 140.
    Phy J, Conover C, Abbot D, Zschunke M, Walker D, Session D, Tummon I, Thornhill A, Lesnick T, Dumesic D. Insulin and Messenger Ribonucleic Acid Expression of Insulin Receptor Isoforms in Ovarian Follicles from Nonhirsute Ovulatory Women and Polycystic Ovary Syndrome Patients J Clin Endocrinol Metab 2004; 89:3561–66Google Scholar
  141. 141.
    Poretsky L, Seto-Young D, Shrestha A, S Dhillon, Mirjany M, Liu HC, Yih M, Rosenwaks Z Phosphatidyl-inositol-3 kinase-independent insulin action pathway(s) in the human ovary. J Clin Endocrinol Metab 2001; 86:3115–9PubMedGoogle Scholar
  142. 142.
    Seto-Young D, Zajac J, Liu HC, Rosenwaks Z, Poretsky L. The role of mitogen-activated protein kinase in insulin and insulin-like growth factor I (IGF-I) signaling cascades for progesterone and IGF-binding protein-1 production in human granulosa cells. J Clin Endocrinol Metab 2003; 88(7):3385–91PubMedGoogle Scholar
  143. 143.
    Coffler MS, Patel K, Dahan MH, Yoo RY, Malcom PJ, Chang RJ. Enhanced granulosa cell responsiveness to follicle-stimulating hormone during insulin infusion in women with polycystic ovary syndrome treated with pioglitazone. J Clin Endocrinol Metab 2003; 88:5624–31PubMedGoogle Scholar
  144. 144.
    Bhatia B, Price C. Insulin alters the effects of follicle stimulating hormone on aromatase in bovine granulosa cells in vitro. Steroids 2001; 66:511–9PubMedGoogle Scholar
  145. 145.
    Jonard S, Dewailly D. The follicular excess in polycystic ovaries, due to intraovarian hyperandrogenism, may be the main culprit for the follicular arrest Hum Reprod Update 2004; 10:107–17Google Scholar
  146. 146.
    Tarkun I, Arslan B, Canturk Z, Turemen E, Sahin T, Duman C. Endothelial dysfunction in young women with polycystic ovary syndrome: relationship with insulin resistance and low-grade chronic inflammation. J Clin Endocrinol Metab 2004; 89:5592–96PubMedGoogle Scholar
  147. 147.
    Diamanti-Kandarakis E, Paterakis T, Alexandraki K, Piperi C, Aessopos A, Katsikis I, Katsilambros N, Kreatsas G, Panidis D. Indices of low-grade chronic inflammation in polycystic ovary syndrome and the beneficial effect of metformin. Hum Reproduction 2006; 21(6):1426–31Google Scholar
  148. 148.
    Diamanti-Kandarakis E, Alexandraki K, Piperi C, Protogerou A, Katsikis I, Paterakis T, Lekakis J, Panidis D. Inflammatory and endothelial markers in women with polycystic ovary syndrome. Eur J Clin Invest 2006; 36(10):691–7PubMedGoogle Scholar
  149. 149.
    Atiomo WU, Fox R, Condon JE, Shaw S, Friend J, Prentice A et al. Raised plasminogen activator inhibitor–1 (PAI-1) is not an independent risk factor in the polycystic ovary syndrome (PCOS). Clin Endocrinol 2000; 52:487–92Google Scholar
  150. 150.
    Kelly CJ, Lyall H, Petrie JR, Gould GW, Connell JM, Rumley A, Lowe GD, Sattar N. A specific elevation in tissue plasminogen activator antigen in women with polycystic ovarian syndrome. J Clin Endocrinol Metab 2002; 87(7):3287–90PubMedGoogle Scholar
  151. 151.
    Carmassi F, De Negri F, Fioriti R, De Giorgi A, Giannarelli C, Fruzzetti F, Pedrinelli R, Dell’Omo G, Bersi C. Insulin resistance causes impaired vasodilation and hypofibrinolysis in young women with polycystic ovary syndrome. Thromb Res 2005; 116:207–14PubMedGoogle Scholar
  152. 152.
    Diamanti-Kandarakis E, Spina G, Kouli C, Migdalis I. Increased endothelin-1 levels in women with polycystic ovary syndrome and the beneficial effect of metformin therapy. J Clin Endocrinol Metab 2001; 86:4666–73PubMedGoogle Scholar
  153. 153.
    Charitidou C, Farmakiotis D, Zournatzi V, Pidonia I, Pegiou T, Karamanis N, Hatzistilianou M, Katsikis I, Panidis D. The administration of estrogens, combined with anti-androgens, has beneficial effects on the hormonal features and asymmetric dimethyl-arginine levels, in women with the polycystic ovary syndrome. Atherosclerosis 2008; 196(2):958–65PubMedGoogle Scholar
  154. 154.
    Orio Jr F, Palomba S, Cascella T, De Simone B, Di Biase S, Russo R, Labella D, Zullo F, Lombardi G, Colao A Early Impairment of Endothelial Structure and Function in Young Normal-Weight Women with Polycystic Ovary Syndrome J Clin Endocrinol Metab 2004; 89:4588–93Google Scholar
  155. 155.
    Kelly CJ, Speirs A, Gould GW, Petrie JR, Lyall H, Connell JM. Altered vascular function in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 2002; 87:742–46PubMedGoogle Scholar
  156. 156.
    Paradisi G, Steinberg HO, Hempfling A, Cronin J, Hook G, Shepard MK, Baron AD. Polycystic ovary syndrome is associated with endothelial dysfunction. Circulation 2001; 103(10):1410–5PubMedGoogle Scholar
  157. 157.
    Diamanti-Kandarakis E, Alexandraki K, Protogerou A, Piperi C, Papamichael C, Aessopos A, Lekakis J and Mavrikakis M Metformin administration improves endothelial function in women with polycystic ovary syndrome. Eur J Endocrinol 2005; 152:749–756Google Scholar
  158. 158.
    Carmina E, Orio F, Palomba S, Longo RA, et al. Endothelial Dysfunction in PCOS: Role of Obesity and Adipose Hormones. Am J Med 2006; 119:356.e1–356.e6Google Scholar
  159. 159.
    Talbott E, Zborowski J, Rager J. Evidence for an association between metabolic cardiovascular syndrome and coronary and aortic calcification among women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89:5454–61PubMedGoogle Scholar
  160. 160.
    Prelevic GM, Beljic T, Balint-Peric L, Ginsburg J. Cardiac flow velocity in women with the polycystic ovary syndrome. Clin Endocrinol (Oxf) 1995; 43:677–81Google Scholar
  161. 161.
    Tiras MB, Yalcin R, Noyan V, Maral I, Yildirim M, Dortlemez O, Daya S. Alterations in cardiac flow parameters in patients with polycystic ovarian syndrome. Hum Reprod 1999; 14:1949–52PubMedGoogle Scholar
  162. 162.
    Orio F, Palomba S, Spinelli L, et al. The Cardiovascular risk of young women with polycystic ovary syndrome: an observational, analytical, prospective case-control study. J Clin Endocrinol Metab 2004; 89:3696–3701Google Scholar
  163. 163.
    Celik O, Sahin I, Celik N, Hascalik S, Keskin L, Ozcan H, Uckan A, Kosar F. Diagnostic potential of serum N-terminal pro-B-type brain natriuretic peptide level in detection of cardiac wall stress in women with polycystic ovary syndrome: a cross-sectional comparison study. Hum Reprod 2007; 22(11):2992–8PubMedGoogle Scholar
  164. 164.
    Cascella T, Palomba S, Tauchmanova L, Manguso F, Di Biase S, Labella D, Giallauria F, Vigorito C, Colao A, Lombardi G, Orio F Jr. Serum aldosterone concentration and cardiovascular risk in women with polycystic ovarian syndrome. J Clin Endocrinol Metab 2006; 91:4395–4400PubMedGoogle Scholar
  165. 165.
    Paradisi G, Steinberg HO, Shepard MK, Hook G, Baron AD. Troglitazone therapy improves endothelial function to near normal levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003; 88(2):576–80PubMedGoogle Scholar
  166. 166.
    Orio F, Palomba S, Cascella T, De Simone B, Manguso F, et al. Improvement in Endothelial Structure and Function after Metformin Treatment in Young Normal-Weight Women with Polycystic Ovary Syndrome: Results of a 6-Month Study. J Clin Endocrinol Metab 2005; 90(11):6072–76PubMedGoogle Scholar
  167. 167.
    Diamanti-Kandarakis E. Pharmaceutical Intervention in Metabolic and Cardiovascular Risk Factors in Polycystic Ovary Syndrome. In Insulin resistance and polycystic ovarian syndrome: pathogenesis, evaluation and treatment (Diamanti-Kandarakis, E. et al., eds), pp. 367–387, Insulin Resistance and Polycystic Ovarian Syndrome:Edited by Evanthia Diamanti-Kandarakis, John Nestler, Dimitrios Panidis, Renato Pasquali: Humana Press 2007Google Scholar
  168. 168.
    Legro RS, Bentley-Lewis R, Driscoll D, Wang SC, Dunaif A. Insulin resistance in the sisters of women with polycystic ovary syndrome: association with hyperandrogenemia rather than menstrual irregularity. J Clin Endocrinol Metab 2002; 87:2128–33PubMedGoogle Scholar
  169. 169.
    Cagnacci A, Paoletti AM, Arangino S, Melis GB, Volpe A. Effect of ovarian suppression on glucose metabolism of young lean women with and without ovarian hyperandrogenism. Hum Reprod 1999; 14: 893–7PubMedGoogle Scholar
  170. 170.
    Moghetti P, Tosi F, Castello R, et al. The insulin resistance in women with hyperandrogenism is partially reversed by antiandrogen treatment: evidence that androgens impair insulin action in women. J Clin Endocrinol Metab 1996; 81:952–60PubMedGoogle Scholar
  171. 171.
    Polderman K, Gorren L, Asscheman H, Bakker A, Heine R. Induction of insulin resistance by androgens and estrogens. J Clin Endocrinol Metab 1994; 79:265–27PubMedGoogle Scholar
  172. 172.
    Elbers J, Giltay E, Teerlink T, Scheffer P, Asscheman H, Seidell J. Gooren LEffects of sex steroids on components of the insulin resistance syndrome in transsexual subjects. Clin Endocrinol 2003; 58:562–571Google Scholar
  173. 173.
    Marsden PJ, Murdoch AP, Taylor R. Adipocyte insulin action following ovulation in polycystic ovarian syndrome. Hum Reprod 1999; 14(9):2216–22PubMedGoogle Scholar
  174. 174.
    Corbould A. Chronic testosterone treatment induces selective insulin resistance in subcutaneous adipocytes of women. J Endocrinol 2007; 192(3):585–94PubMedGoogle Scholar
  175. 175.
    Allemand MC, Asmann Y, Klaus K, Nair K. S An in vitro model for PCOS related insulin resistance: the effects of testosterone on phosphorylation of intracellular insulin signalling proteins in rat skeletal muscle primary culture. Fertil Steril Abstracts 2005; 84(Suppl 1):S30–31Google Scholar
  176. 176.
    Mannerås L, Cajander S, Holmäng A, Seleskovic Z, Lystig T, Lönn M, Stener Victorin E. A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology 2007; 148(8):3781–91PubMedGoogle Scholar
  177. 177.
    Perello M, Castrogiovanni D, Giovambattista A, Gaillard RC, Spinedi E. Impairment in insulin sensitivity after early androgenization in the post-pubertal female rat. Life Sci 2007; 80(19):1792–8PubMedGoogle Scholar
  178. 178.
    Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, Matsuda M, Kondo H, Furuyama N, Kihara S, Nakamura T, Tochino Y, Funahashi T, Matsuzawa Y. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes. 2002; 51(9):2734–41PubMedGoogle Scholar
  179. 179.
    Panidis D, Kourtis A, Farmakiotis D, Mouslech T, Rousso D, Koliakos G. Serum adiponectin levels in women with polycystic ovary syndrome. Hum Reprod 2003; 18(9):1790–96PubMedGoogle Scholar
  180. 180.
    Xu A, Chan KW, Hoo RL, Wang Y, Tan KC, Zhang J, Chen B, Lam MC, Tse C, Cooper GJ, Lam KS. Testosterone Selectively Reduces the High Molecular Weight Form of Adiponectin by Inhibiting Its Secretion from Adipocytes J Biol Chem 2005; 280(18):18073–80Google Scholar
  181. 181.
    Arner P. Effects of testosterone on fat cell lipolysis. Species differences and possible role in polycystic ovarian syndrome. Biochimie 2005; 87(1):39–43PubMedGoogle Scholar
  182. 182.
    Diamanti-Kandarakis E, Mitrakou A, Raptis S, Tolis G, Duleba AJ. The effect of a pure antiandrogen receptor blocker, flutamide, on the lipid profile in the polycystic ovary syndrome. J Clin Endocrinol Metab 1998; 83:2699–2705PubMedGoogle Scholar
  183. 183.
    Perrini S, Natalicchio A, Laviola L, Belsanti G, Montrone C, Cignarelli A, Minielli V, Grano M, De Pergola G, Giorgino R, Giorgino F. Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane. Diabetes 2004; 53:41–52PubMedGoogle Scholar
  184. 184.
    Ishizuka T, Kajita K, Miura A, Ishikawa M, Kanoh Y, Itaya S, Kimura M, Muto N, Mune T, Morita H, Yasuda K. DHEA improves glucose uptake via activations of protein kinase C and phosphatidylinositol 3-kinase. Am J Physiol 1999; 276: E196–E204PubMedGoogle Scholar
  185. 185.
    Formoso G, Chen H, Kim J, Montagnani M, Consoli A, Quon M. Dehydroepiandrosterone mimics acute actions of insulin to stimulate production of both nitric oxide and endothelin 1 via distinct phosphatidylinositol 3-kinase and mitogen-activated protein kinase- dependent pathways in vascular endothelium. Mol Endocrinol 2006; 20:1153–63PubMedGoogle Scholar
  186. 186.
    González F, Rote NS, Minium J, Kirwan JP. Reactive oxygen species induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab 2006a; 91:336–340Google Scholar
  187. 187.
    Escobar-Morreale HF, Botella-Carretero JI, Villuendas G, Botella-Carretero J, Villuendas G., Sancho J, San Millan JL. Serum interleukin-18 concentrations are increased in the polycystic ovary syndrome: relationship to insulin resistance and to obesity. J Clin Endocrinol Metab 2004; 89:806–11PubMedGoogle Scholar
  188. 188.
    Zhang YF, Yang YS, Hong J, Gu WQ, Shen CF, Xu M, Du PF, Li XY, Ning G. Elevated serum levels of interleukin-18 are associated with insulin resistance in women with polycystic ovary syndrome. Endocrine 2006; 29(3):419–23PubMedGoogle Scholar
  189. 189.
    Fencki V, Fenkci S, Yilmazer M, Serteser M. Decreased total antioxidant status and increased oxidative stress in women with polycystic ovary syndrome may contribute to the risk of cardiovascular disease Fertil Steril 2003; 80:123–27Google Scholar
  190. 190.
    Glintborg D, Højlund K, Andersen M, Henriksen JE, Beck-Nielsen H, Handberg A. Soluble CD36 and risk markers of insulin resistance and atherosclerosis are elevated in polycystic ovary syndrome and significantly reduced during pioglitazone treatment. Diab Care 2008; 31(2):328–34Google Scholar
  191. 191.
    González F, Rote N, Minium J, Kirwan J. In vitro evidence that hyperglycemia stimulates TNF- α release in obese women with polycystic ovary syndrome. J Endocrinol 2006b; 188:521–29Google Scholar
  192. 192.
    Gonzalez F, Rote N, Minium J, Kirwan J. Increased activation of nuclear factor B triggers inflammation and insulin resistance in polycystic ovary syndrome. J Clin Endocrinol Metab 2006c; 91:1508–12Google Scholar
  193. 193.
    Naz RK, Thurston D, Santoro N. Circulating tumor necrosis factor (TNF)-a in normally cycling women and patients with premature ovarian failure and polycystic ovaries. Am J Reprod Immunol 1995; 34:170–75PubMedGoogle Scholar
  194. 194.
    Puder JJ, Varga S, Nusbaumer CPG,. Zulewski H, Bilz S, Müller B, Keller U. Women with polycystic ovary syndrome are sensitive to the TNF-a lowering effect of glucose-induced hyperinsulinaemia. Eur J Clin Inves 2006; 36:883–89Google Scholar
  195. 195.
    Wellen K, Hotamisligil G. Inflammation, stress, and diabetes. J Clin Invest 2005; 115(5):1111–19PubMedGoogle Scholar
  196. 196.
    Carmina E, Bucchieri S, Esposito A, Del Puente A, Mansueto P, Orio F, Di Fede G, Rini GB. Abdominal fat quantity and distribution in women with polycystic ovary syndrome and extent of its relation to insulin resistance. J Clin Endocrinol Metab 2007; 92:2500–5PubMedGoogle Scholar
  197. 197.
    Yildirim B, Sabir N, Kaleli B. Relation of intra-abdominal fat distribution to metabolic disorders in nonobese patients with polycystic ovary syndrome Fertil Steril 2003; 79:1358–64Google Scholar
  198. 198.
    Puder JJ, Varga S, Kraenzlin M, De Geyter C, Keller U, Muller B. Central fat excess in polycystic ovary syndrome: relation to low-grade inflammation and insulin resistance. J Clin Endocrinol Metab 2005; 90(11):6014–21PubMedGoogle Scholar
  199. 199.
    Glintborg D, Andersen M, Hagen C, Frystyk J, Hulstrom V, Flyvbjerg A, Hermann AP. Evaluation of metabolic risk markers in polycystic ovary syndrome (PCOS). Adiponectin, ghrelin, leptin and body composition in hirsute PCOS patients and controls. Eur J Endocrinol 2006; 155:337–45PubMedGoogle Scholar
  200. 200.
    Curat CA, Wegner V, Sengenes C, et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 2006; 49:744–47Google Scholar
  201. 201.
    Lumeng C, Deyoung S, Saltiel A. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab 2007; 292:E166–E174PubMedGoogle Scholar
  202. 202.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante JrAW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112:1796–1808PubMedGoogle Scholar
  203. 203.
    Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atherosclerosis. Am J Physiol Heart Circ Physiol. 2005; 288:H2031–H2041PubMedGoogle Scholar
  204. 204.
    Ardawi MS, Rouzi AA. Plasma adiponectin and insulin resistance in women with polycystic ovary syndrome. Fertil Steril 2005; 83:1708–16PubMedGoogle Scholar
  205. 205.
    Escobar-Morreale HF, Villuendas G, Botella-Carretero JI. Adiponectin and resistin in PCOS: a clinical, biochemical and molecular genetic study. Human Reprod 2006; 21(9):2257–65Google Scholar
  206. 206.
    Glintborg D, Frystyk J, Højlund K, Andersen KK, Henriksen JE, Hermann AP, Hagen C, Flyvbjerg A, Andersen M. Total and high molecular weight (HMW) adiponectin levels and measures of glucose and lipid metabolism following pioglitazone treatment in a randomized placebo-controlled study in polycystic ovary syndrome. Clin Endocrinol 2008; 68(2):165–74Google Scholar
  207. 207.
    Sepilian V, Nagamani M. Adiponectin levels in women with polycystic ovary syndrome and severe insulin resistance. J Soc Gynecol Invest 2005; 12:129–34Google Scholar
  208. 208.
    Aroda V, Ciaraldi T, Chang S, Dahan MH, Chang RJ, Henry RR. Circulating and cellular adiponectin in polycystic ovary syndrome: relationship to glucose tolerance and insulin action. Fertil Steril 2008; 89(5):1200–8Google Scholar
  209. 209.
    Sieminska L, Marek B, Kos-Kudla B, Niedziolka D, Kajdaniuk D, Nowak M, Glogowska-Szelag J. Serum adiponectin in women with polycystic ovarian syndrome and its relation to clinical, metabolic and endocrine parameters. J Endocrinol Invest 2004; 27:528–34PubMedGoogle Scholar
  210. 210.
    Spranger J, Möhlig M, Wegewitz U, Ristow M, Pfeiffer A, Schill T, Schlösser H, Brabant G, Schöfl C. Adiponectin is independently associated with insulin sensitivity in women with polycystic ovary syndrome. Clin Endocrinol 2004; 61:738–46Google Scholar
  211. 211.
    Orio Jr F, Palomba S, Cascella T, Milan G, Mioni R, Pagano C, Zullo F, Colao A, Lombardi G, Vettor R. Adiponectin levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003; 88:2619–23PubMedGoogle Scholar
  212. 212.
    Shroff R, Kirschner A, Michelle M, Van Beek E, Jagasia D, Dokras A. Young Obese Women with Polycystic Ovary Syndrome have Evidence of Early Coronary Atherosclerosis. J Clin Endocrin Metab 2007; 92(12):4609–14Google Scholar
  213. 213.
    Panidis D, Koliakos G, Kourtis A. Serum resistin levels in women with polycystic ovary syndrome. Fertil Steril 2004; 81: 361–66PubMedGoogle Scholar
  214. 214.
    Chan TF, Chen YL, Chen HH, Lee CH, Jong SB, Tsai EM. Increased plasma visfatin concentrations in women with polycystic ovary syndrome. Fertil Steril 2007; 88(2):401–5PubMedGoogle Scholar
  215. 215.
    Ost A, Danielsson A, Liden M, Eriksson U, Nystrom FH, Stralfors P. Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes. FASEB J 2007; 21(13):3696–704PubMedGoogle Scholar
  216. 216.
    Janke J, Engeli S, Boschmann M, Adams F, Böhnke J, Luft FC, Sharma AM, Jordan J. Retinol-binding protein 4 in human obesity. Diabetes 2006; 55:2805–10PubMedGoogle Scholar
  217. 217.
    Weiping L, Qingfeng C, Shikun M, Xiurong L, Hua Q, Xiaoshu B, Suhua Z, Qifu L. Elevated serum RBP4 is associated with insulin resistance in women with polycystic ovary syndrome. Endocrine 2006; 30:283–88PubMedGoogle Scholar
  218. 218.
    Lee JW, Im JA, Lee DC. Retinol binding protein in non-obese women with polycystic ovary syndrome. Clin Endocrinol 2008; 68:786–790Google Scholar
  219. 219.
    Hahn S, Backhaus M, Broecker-Preuss M, Tan S, Dietz T, Kimmig R, Schmidt M, Mann K, Janssen OE. Retinol-binding protein 4 levels are elevated in polycystic ovary syndrome women with obesity and impaired glucose metabolism. Eur J Endocrin 2007; 157:201–207Google Scholar
  220. 220.
    Hutchison SK, Harrison C, Stepto N, Meyer C, Teede HJ. Retinol-binding protein 4 and insulin resistance in polycystic ovary syndrome. Diabetes Care 2008; 31(7):1427–32PubMedGoogle Scholar
  221. 221.
    Diamanti-Kandarakis E, Livadas S, Kandarakis S, Papassotiriou I and Margeli A. Low free plasma levels of Retinol-binding Protein 4 (RBP4) in insulin resistant subjects with Polycystic Ovary Syndrome. J Endocrinol Invest 2008, in Press.Google Scholar
  222. 222.
    Graham TE, Wason CJ, Blüher M, Kahn BB. Shortcomings in methodology complicate measurements of serum retinol binding protein (RBP4) in insulin-resistant human subjects. Diabetologia 2007; 50(4):814–23PubMedGoogle Scholar
  223. 223.
    Miele C, Riboulet A, Maitan MA, Oriente F, Romano C, Formisano P, Giudicelli J, Beguinot F, Van Obberghen E. Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin eceptor substrate (IRS) signalling through a protein kinase C-α mediated mechanism. J Biol Chem 2003; 278:47376–87PubMedGoogle Scholar
  224. 224.
    Uribarri J, Stirban A, Sander D, Cai W, Negrean M, Buenting CE, Koschinsky T, Vlassara H. Single oral challenge by advanced glycation end products acutely impairs endothelial function in diabetic and nondiabetic subjects. Diabetes Care 2007; 30(10):2579–82PubMedGoogle Scholar
  225. 225.
    Diamanti-Kandarakis E, Piperi C, Patsouris E, Korkolopoulou P, Panidis D, Pawelczyk L, Papavassiliou AG, Duleba AJ. Immunohistochemical localization of advanced glycation end-products (AGEs) and their receptor (RAGE) in polycystic and normal ovaries. Histochem Cell Biol 2007; 127:581–89PubMedGoogle Scholar
  226. 226.
    Diamanti-Kandarakis E, Piperi C, Korkolopoulou P, Kandaraki E, Levidou G, Papalois A, Patsouris E, Papavassiliou AG. Accumulation of dietary glycotoxins in the reproductive system of normal female rats. J Mol Med 2007; 85(12):1413–20PubMedGoogle Scholar
  227. 227.
    Siegel S, Futterweit W, Davies TF, Concepcion ES, Greenberg DA, Villanueva R, Tomer Y. A C/T single nucleotide polymorphism at the tyrosine kinase domain of the insulin receptor gene is associated with polycystic ovary syndrome. Fertil Steril 2002; 78:1240–43PubMedGoogle Scholar
  228. 228.
    Urbanek M, Sam S, Legro RS, Dunaif A. Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metab 2007; 92(11):4191–98PubMedGoogle Scholar
  229. 229.
    Tucci S, Futterweit W, Concepcion ES, Greenberg DA, Villanueva R, Davies TF, Tomer Y. Evidence for association of polycystic ovary syndrome in caucasian women with a marker at the insulin receptor gene locus. J Clin Endocrinol Metab 2001; 86:446–49PubMedGoogle Scholar
  230. 230.
    Ukkola O, Rankinen T, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C. A genome-wide linkage scan for steroids and SHBG levels in black and white families: the HERITAGE Family Study. J Clin Endocrinol Metab 2002; 87:3708–20PubMedGoogle Scholar
  231. 231.
    El Mkadem SA, Lautier C, Macari F, Molinari N, Lefebvre P, Renard E, Gris JC, Cros G, Daures JP, Bringer J, White MF, Grigorescu F. Role of allelic variants Gly972Arg of IRS-1 and Gly1057Asp of IRS-2 in moderate-to-severe insulin resistance of women with polycystic ovary syndrome. Diabetes 2001; 50:2164–68PubMedGoogle Scholar
  232. 232.
    Ehrmann DA, Tang X, Yoshiuchi I, Cox NJ, Bell GI Relationship of insulin receptor substrate-1 and -2 genotypes to phenotypic features of polycystic ovary syndrome. J Clin Endocrinol Metab 2002a; 87:4297–4300Google Scholar
  233. 233.
    Bennett ST, Lucassen AM, Gough SC, Powell EE, Undlien DE, Pritchard LE, Merriman ME, Kawaguchi Y, Dronsfield MJ, Pociot F et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 1995; 9:284–92PubMedGoogle Scholar
  234. 234.
    Waterworth DM, Bennett ST, Gharani N, McCarthy MI, Hague S, Batty S, Conway GS, White D, Todd JA, Franks S et al. Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome. Lancet 1997; 349:986–90PubMedGoogle Scholar
  235. 235.
    Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ, Strauss JF 3rd, Spielman RS, Dunaif A. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Nat Acad Sci USA 1999; 96:8573–78PubMedGoogle Scholar
  236. 236.
    Calvo RM, Telleria D, Sancho J, San Millan JL, Escobar-Morreale HF. Insulin gene variable number of tandem repeats regulatory polymorphism is not associated with hyperandrogenism in Spanish women. Fertil Steril 2002; 77:666–68.PubMedGoogle Scholar
  237. 237.
    Vankova M, Vrbikova J, Hill M, Cinek O, Bendlova B. Association of insulin gene VNTR polymorphism with polycystic ovary syndrome. Ann N Y Acad Sci 2002; 967:558–65PubMedGoogle Scholar
  238. 238.
    Ehrmann DA, Schwarz PE, Hara M, Tang X, Horikawa Y, Imperial J, Bell GI, Cox NJ. Relationship of calpain-10 genotype to phenotypic features of polycystic ovary syndrome. J Clin Endocrinol Metab 2002b; 87:1669–73Google Scholar
  239. 239.
    Gonzalez A, Abril E, Roca A, Aragon MJ, Figueroa MJ, Velarde P, Royo JL, Real LM, Ruiz A. Comment: CAPN10 alleles are associated with polycystic ovary syndrome. J Clin Endocrinol Metab 2002; 87:3971–76PubMedGoogle Scholar
  240. 240.
    Gonzalez A, Abril E, Roca A, Aragon MJ, Figueroa MJ, Velarde P, Ruiz R, Fayez O, Galan JJ, Herreros JA et al. Specific CAPN10 gene haplotypes influence the clinical profile of polycystic ovary patients. J Clin Endocrinol Metab 2003; 88: 5529–36PubMedGoogle Scholar
  241. 241.
    Haddad L, Evans JC, Gharani N, Robertson C, Rush K, Wiltshire S, Frayling TM, Wilkin TJ, Demaine A, Millward A et al. Variation within the type 2 diabetes susceptibility gene calpain-10 and polycystic ovary syndrome. J Clin Endocrinol Metab 2002; 87:2606–10PubMedGoogle Scholar
  242. 242.
    Hara M, Alcoser SY, Qaadir A, Beiswenger KK, Cox NJ, Ehrmann DA. Insulin resistance is attenuated in women with polycystic ovary syndrome with the Pro (12) Ala polymorphism in the PPARgamma gene. J Clin Endocrinol Metab 2002; 87:772–75PubMedGoogle Scholar
  243. 243.
    Witchel SF, White C, Siegel ME, Aston CE. Inconsistent effects of the proline12→alanine variant of the peroxisome proliferator-activated receptor-gamma2 gene on body mass index in children and adolescent girls. Fertil Steril 2001; 76: 741–47PubMedGoogle Scholar
  244. 244.
    San Millan JL, Corton M, Villuendas G, Sancho J, Peral B, Escobar-Morreale HF. Association of the polycystic ovary syndrome with genomic variants related to insulin resistance, type 2 diabetes mellitus, and obesity. J Clin Endocrinol Metab 2004; 89:2640–46PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Evanthia Diamanti-Kandarakis
    • 1
    Email author
  • Charikleia D. Christakou
  1. 1.Endocrine Section of the 1st Department of MedicineUniversity of Athens, Medical SchoolGreece

Personalised recommendations