Experimental Investigation of Local Searches for Optimization of Grillage-Type Foundations

  • Sergėjus Ivanikovas
  • Ernestas Filatovas
  • Julius Žilinskas
Part of the Springer Optimization and Its Applications book series (SOIA, volume 27)

Abstract

In grillage-type foundations, beams are supported by piles. The main goal of engineering design is to achieve the optimal pile placement scheme in which the minimal number of piles is used and all the reactive forces do not exceed the allowed values. This can be achieved by searching for the positions of piles where the difference between the maximal reactive forces and the limit magnitudes of reactions for the piles is minimal. In this study, the values of the objective function are given by a separate modeling package. Various algorithms for local optimization have been applied and their performance has been investigated and compared. Parallel computations have been used to speed-up experimental investigation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arfken, G., Weber, H.: Mathematical Methods for Physicists, 6th edn., chap. 7.3, pp. 489–496. Academic Press (2005)Google Scholar
  2. 2.
    Baravykaitė, M., Belevičius, R., Čiegis, R.: One application of the parallelization tool of master-slave algorithms. Informatica 13(4), 393–404 (2002)MATHGoogle Scholar
  3. 3.
    Belevičius, R., Valentinavičius, S., Michnevič, E.: Multilevel optimization of grillages. Journal of Civil Engineering and Management 8(2), 98–103 (2002)Google Scholar
  4. 4.
    Broyden, C.G.: The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA Journal of Applied Mathematics 6(1), 76–90 (1970)Google Scholar
  5. 5.
    Čiegis, R.: On global minimization in mathematical modelling of engineering applications. In: A. Törn, J. Žilinskas (eds.) Models and Algorithms for Global Optimization, Springer Optimization and Its Applications, vol. 4, pp. 299–310. Springer (2007)Google Scholar
  6. 6.
    Čiegis, R., Baravykaitė, M., Belevičius, R.: Parallel global optimization of foundation schemes in civil engineering. Lecture Notes in Computer Science 3732, 305–312 (2006)CrossRefGoogle Scholar
  7. 7.
    Davidon, W.C.: Variable metric method for minimization. SIAM Journal on Optimization 1(1), 1–17 (1991)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Erdelyi, A.: Asymptotic Expansions. Dover (1956)Google Scholar
  9. 9.
    Fletcher, R.: A new approach to variable metric algorithms. Computer Journal 13(3), 317–322 (1970)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fletcher, R.: Practical Methods of Optimization, 2nd edn. John Wiley & Sons (2000)Google Scholar
  11. 11.
    Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Computer Journal 6(1), 163–168 (1963)MATHMathSciNetGoogle Scholar
  12. 12.
    Goldfarb, D.: A family of variable-metric methods derived by variational means. Mathematics of Computation 24(109), 23–26 (1970)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal of Optimization 9(1), 112–147 (1998)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, chap. 4.6, pp. 434–443. McGraw-Hill, New York (1953)Google Scholar
  15. 15.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edn. Cambridge University Press (1992)Google Scholar
  16. 16.
    Shanno, D.F.: Conditioning of Quasi-Newton methods for function minimization. Mathematics of Computation 24(111), 647–656 (1970)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sergėjus Ivanikovas
    • 1
  • Ernestas Filatovas
    • 1
  • Julius Žilinskas
    • 1
  1. 1.Institute of Mathematics and InformaticsAkademijos 4Lithuania

Personalised recommendations