Advertisement

Computational Requirements for Pulsar Searches with the Square Kilometer Array

  • Roy Smits
  • Michael Kramer
  • Ben Stappers
  • Andrew Faulkner
Part of the Springer Optimization and Its Applications book series (SOIA, volume 27)

Abstract

One of the key science projects of the Square Kilometer Array (SKA) SKA is to provide a strong-field test of gravitational physics by finding and timing pulsars in extreme binary systems, such as a pulsar-black hole binary. We studied the computational requirements for beam forming and data analysis, assuming the SKADS (SKA Design Studies) design for the SKA, which consists of 15-meter dishes and an aperture array (AA). Beam forming of the 1-km core of the SKA requires no more than 2˙1015 ops. This number can be reduced when the dishes are placed in identical sub-arrays. Limiting the total field of view (FoV) of the AA to 3 deg 2, the maximum data rate from a pulsar survey using the 1-km core becomes about 2.7˙1013 bytes per second and requires a computation power of about 2.6˙1017 ops for a deep real-time analysis.

Keywords

Core Diameter Computational Requirement Galactic Plane Pencil Beam Aperture Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cordes, J.M.: The SKA as a radio synoptic survey telescope: Widefield surveys for transients, pulsars and ETI (2007). http://www.skatelescope.org/PDF/memos/97_memo_Cordes.pdf
  2. 2.
    Cordes, J.M., Kramer, M., Lazio, T.J.W., Stappers, B.W., Backer, D.C., Johnston, S.: Pulsars as tools for fundamental physics & astrophysics. New Astronomy Review 48, 1413–1438 (2004). doi 10.1016/j.newar.2004.09.040CrossRefGoogle Scholar
  3. 3.
    Cornwell, T.J.: SKA computing costs for a generic telescope model. Memo 64, SKA (2005). http://www.skatelescope.org/PDF/memos/64_Cornwell.pdf
  4. 4.
    Hörtnagl, C.: Evaluation of technologies of parallel computers’ communication networks for a real-time triggering application in a high-energy physics experiment at CERN. Ph.D. thesis, CERN, Genève (1997). http://atlas.web.cern.ch/Atlas/documentation/thesis/hortnagl/ writeup.ps.gz
  5. 5.
    Kramer, M., Backer, D.C., Cordes, J.M., Lazio, T.J.W., Stappers, B.W., Johnston, S.: Strong-field tests of gravity using pulsars and black holes. New Astronomy Review 48, 993–1002 (2004). doi 10.1016/j.newar.2004.09.020CrossRefGoogle Scholar
  6. 6.
    Manchester, R.N., Lyne, A.G., Camilo, F., Bell, J.F., Kaspi, V.M., D’Amico, N., McKay, N.P.F., Crawford, F., Stairs, I.H., Possenti, A., Kramer, M., Sheppard, D.C.: The Parkes multi-beam pulsar survey - I. Observing and data analysis systems, discovery and timing of 100 pulsars. MNRAS 328, 17–35 (2001). doi 10.1046/j.1365-8711.2001.04751.xCrossRefGoogle Scholar
  7. 7.
    Schilizzi, R.T., Alexander, P., Cordes, J.M., Dewdney, P.E., Ekers, R.D., Faulkner, A.J., Gaensler, B.M., Hall, P.J., Jonas, J.L., Kellermann, K.I.: Preliminary specifications for the Square Kilometre Array, v2.7.1. SKA draft (2007). http://www.skatelescope.org/PDF/ Preliminary Specifications of the Square Kilometre Array_v2.7.1.pdf
  8. 8.
    Stancu, S.N.: Networks for the ATLAS LHC detector: Requirements, design and validation. Ph.D. thesis, Universitatea POLITEHNICA Bucuresti, Bucharest (2005). http://documents.cern.ch/cgi-bin/setlink?base=preprint&categ% =cern&id=cern-thesis-2005-054

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Roy Smits
    • 1
  • Michael Kramer
    • 1
  • Ben Stappers
    • 1
  • Andrew Faulkner
    • 1
  1. 1.Jodrell Bank Centre for AstrophysicsUniversity of ManchesterUK

Personalised recommendations