Marking the chops: an unambiguous temporal logic

  • Kamal Lodaya
  • Paritosh K. Pandya
  • Simoni S. Shah
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 273)


Temporal Logic Atomic Formula Linear Temporal Logic Parse Tree Syntax Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick and L. Segoufin. Two-variable logic on words with data, Proc. LICS, Seattle, 2006, 7–16.Google Scholar
  2. M. Bojańczyk. Two-way unary temporal logic over trees, Proc. LICS, Wrocław, 2007.Google Scholar
  3. B. Borchert and P. Tesson. The atnext/atprevious hierarchy on the starfree languages, Report WSI-2004-11 (U. Tübingen 2004).Google Scholar
  4. V. Diekert, P. Gastin and M. Kufleitner. A survey on small fragments of first-order logic over finite words, Int. J. Found. Comp. Sci., to appear.Google Scholar
  5. K. Etessami, M.Y. Vardi and T. Wilke. First-order logic with two variables and unary temporal logic, Inf. Comput. 179, 2002, 279–295.MathSciNetCrossRefzbMATHGoogle Scholar
  6. S.N. Krishna and P.K. Pandya. Modal strength reduction in quantified discrete duration calculus, Proc. FSTTCS, Hyderabad (R. Ramanujam and S. Sen, eds.), LNCS 3821, 2005, 444–456.Google Scholar
  7. M. Kufleitner. Polynomials, fragments of temporal logic and the variety DA over traces, Theoret. Comp. Sci. 376, 2007, 89–100.MathSciNetCrossRefzbMATHGoogle Scholar
  8. M. Kufleitner and P. Weil. On FO 2 quantifier alternation over words, Manuscript, Jan 2008.Google Scholar
  9. C. Löding and W. Thomas. Alternating automata and logics over infinite words, Proc. IFIP TCS, Sendai J. van Leeuwen, O. Watanabe, M. Hagiya, P.D. Mosses, T. Ito, eds.), LNCS 1872, 2000, 521–535.Google Scholar
  10. M. Mortimer. On language with two variables, Zeit. Math. Log. Grund. Math. 21, 1975, 135–140.MathSciNetCrossRefzbMATHGoogle Scholar
  11. B.C. Moszkowski and Z. Manna. Reasoning in interval temporal logic, Proc. Logics of programs, Pittsburgh (E.M. Clarke and D. Kozen, eds.), LNCS 164, 1983, 371–382.Google Scholar
  12. J.-E. Pin and P. Weil. Polynomial closure and unambiguous products, Theory Comput. Syst. 30, 1997, 383–422.MathSciNetCrossRefzbMATHGoogle Scholar
  13. M.-P. Schützenberger. Sur le produit de concaténation non ambigu, Semigroup Forum 13, 1976, 47–75.MathSciNetCrossRefzbMATHGoogle Scholar
  14. T. Schwentick, D. Thérien and H. Vollmer. Partially-ordered two-way automata: a new characterization of DA, Proc. DLT ’01, Vienna (W. Kuich, G. Rozenberg and A. Salomaa, eds.), LNCS 2295, 2002, 239–250.Google Scholar
  15. S.S. Shah. FO 2 and related logics, Master’s thesis (TIFR, 2007).Google Scholar
  16. I. Simon. Piecewise testable events, Proc. GI Conf. Autom. Theory and Formal Lang., Kaiserslautern (H. Barkhage, ed.), LNCS 33, 1975, 214–222.Google Scholar
  17. L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time, Proc. STOC, Austin 1973, 1–9.Google Scholar
  18. P. Tesson and D. Thérien. Diamonds are forever: the variety DA, Semigroups, algorithms, automata and languages G.M.S. Gomes, P.V. Silva and J.-E. Pin, eds.), (World Scientific 2002) 475–500.Google Scholar
  19. D. Thérien and T. Wilke. Over words, two variables are as powerful as one quantifier alternation: FO 2 = Σ2 ∩ Π2, Proc. STOC, Dallas, 1998, 41–47.Google Scholar
  20. P. Weis and N. Immerman. Structure theorem and strict alternation hierarchy for FO 2 on words, Proc. CSL, Lausanne (J. Duparc and T. Henzinger, eds.), LNCS 4646, 2007, 343–357.Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Kamal Lodaya
    • 1
  • Paritosh K. Pandya
    • 2
  • Simoni S. Shah
    • 2
  1. 1.The Institute of Mathematical SciencesChennai 600113India
  2. 2.Tata Institute of Fundamental Research ColabaMumbai 400005India

Personalised recommendations