Hamiltonicity of automatic graphs

  • Dietrich Kuske
  • Markus Lohrey
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 273)


It is shown that the existence of a Hamiltonian path in a planar automatic graph of bounded degree is complete for ∑1 1, the first level of the analytical hierarchy. This sharpens a corresponding result of Hirst and Harel for highly recursive graphs. Furthermore, we also show: (i) The Hamiltonian path problem for finite planar graphs that are succinctly encoded by an automatic presentation is NEXPTIME-complete, (ii) the existence of an infinite path in an automatic successor tree is ∑1 1-complete, and (iii) an infinite version of the set cover problem is decidable for automatic graphs (it is ∑1 1-complete for recursive graphs).


Planar Graph Hamiltonian Path Binary Decision Diagram Tile Type Graph Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. R. Bean. Effective coloration. J. Symbolic Logic, 41(2):469–480, 1976.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    D. R. Bean. Recursive Euler and Hamilton paths. Proc. Amer. Math. Soc., 55(2):385–394, 1976.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    R. Beigel and W. I. Gasarch. unpublished results. 1986–1990.Google Scholar
  4. 4.
    R. Berger. The undecidability of the domino problem. Mem. Am. Math. Soc., 66. AMS, 1966.Google Scholar
  5. 5.
    A. Blumensath and E. Grädel. Finite presentations of infinite structures: Automata and interpretations. Theory Comput. Syst., 37(6):641–674, 2004.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    N. Dean, R. Thomas, and X. Yu. Spanning paths in infinite planar graphs. J. Graph Theory, 23(2):163–174, 1996.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    R. Diestel. Graph Theory, Third Edition. Springer, 2006.Google Scholar
  8. 8.
    M. Fürer. The computational complexity of the unconstrained limited domino problem (with implications for logical decision problems). In Logic and machines: decision problems and complexity, LNCS 171, pages 312–319. Springer, 1984.Google Scholar
  9. 9.
    M. Garey, D. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput., 5(4):704–714, 1976.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    D. Harel. A simple undecidable domino problem (or, a lemma on infinite trees, with applications). In Proc. Logic and Computation Conference, Victoria, Australia, 1984. Clayton.Google Scholar
  11. 11.
    D. Harel. Recurring dominoes: making the highly undecidable highly understandable. Ann. Discrete Math., 24:51–72, 1985.MathSciNetMATHGoogle Scholar
  12. 12.
    D. Harel. Effective transformations on infinite trees, with applications to high undecidability, dominoes, and fairness. J. Assoc. Comput. Mach., 33(1):224–248, 1986.MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Harel. Hamiltonian paths in infinite graphs. Israel J. Math., 76(3):317–336, 1991.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    T. Hirst and D. Harel. Taking it to the limit: on infinite variants of NP-complete problems. J. Comput. System Sci., 53:180–193, 1996.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    B. Khoussainov and M. Minnes. Model theoretic complexity of automatic structures. In Proceedings of TAMC 08. Springer, 2008. to appear.Google Scholar
  16. 16.
    B. Khoussainov and A. Nerode. Automatic presentations of structures. In LCC: International Workshop on Logic and Computational Complexity, LNCS 960, pages 367–392, 1994.Google Scholar
  17. 17.
    B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic structures: richness and limitations. Log. Methods Comput. Sci., 3(2):2:2, 18 pp. (electronic), 2007.Google Scholar
  18. 18.
    B. Khoussainov, S. Rubin, and F. Stephan. On automatic partial orders. In Proc. LICS 2003, pages 168–177. IEEE Computer Society Press, 2003.Google Scholar
  19. 19.
    B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity in automatic structures. In Proc. STACS 2004, LNCS 2996, pages 440–451. Springer, 2004.Google Scholar
  20. 20.
    B. Khoussainov, S. Rubin, and F. Stephan. Automatic linear orders and trees. ACM Trans. Comput. Log., 6(4):675–700, 2005.MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Kozen. Theory of Computation. Springer, 2006.Google Scholar
  22. 22.
    D. Kuske and M. Lohrey. First-order and counting theories of omega-automatic structures. J. Symbolic Logic, 73:129–150, 2008.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    A. B. Manaster and J. G. Rosenstein. Effective matchmaking (recursion theoretic aspects of a theorem of Philip Hall). Proc. London Math. Soc. (3), 25:615–654, 1972.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    S. Rubin. Automatic Structures. PhD thesis, University of Auckland, 2004.Google Scholar
  25. 25.
    S. Rubin. Automata presenting structures: A survey of the finite string case. Bull. Symbolic Logic, 2008. To appear.Google Scholar
  26. 26.
    I. A. Stewart. Using the Hamiltonian path operator to capture NP. J. Comput. System Sci., 45(1):127–151, 1992.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    W. T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc., 82:99–116, 1956.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    H. Veith. How to encode a logical structure by an OBDD. In Proc. 13th Annual Conf. Computational Complexity, pages 122–131. IEEE Computer Society, 1998.Google Scholar
  29. 29.
    H. Wang. Proving theorems by pattern recognition. Bell Syst. Tech. J., 40:1–41, 1961.CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Dietrich Kuske
    • 1
  • Markus Lohrey
    • 1
  1. 1.Institut für InformatikUniversität LeipzigLeipzigGermany

Personalised recommendations