Wang tiles are unit size squares with colored edges. To know whether a given finite set of Wang tiles can tile the plane while respecting colors on edges is undecidable. Robinson’s tiling is an auto-similar tiling in which the computation of a Turing machine can be carried out. By using this construction and by considering a strong notion of simulation between tilings, we prove computability results for tilings. In particular, we prove theorems on tilings that are similar to Kleene’s recursion theorems. Then we define and show how to construct reductions between sets of tile sets. We generalize this construction to be able to transform a tile set with a given recursively enumerable property into a tile set with another property. These reductions lead naturally to a Rice-like theorem for tilings.


Turing Machine Recursive Function Special Color Colored Edge Exact Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allauzen (C.) and Durand (B.), The Classical Decision Problem, appendix A: “Tiling problems”, p. 407–420. Springer, 1996.Google Scholar
  2. 2.
    Ballier (A.), Durand (B.) and Jeandel (E.), «Structural Aspects of Tilings », to appear in Proceedings of the Symposium on Theoretical Aspects of Computer Science, 2008.Google Scholar
  3. 3.
    Berger (R.), «The undecidability of the domino problem », Memoirs of the American Mathematical Society, vol. 66, 1966, p. 1–72.Google Scholar
  4. 4.
    Cervelle (J.) and Durand (B.), «Tilings: recursivity and regularity », Theoretical Computer Science, vol. 310, nº 1-3, 2004, p. 469–477.Google Scholar
  5. 5.
    Culik II (K.) and Kari (J.), «On aperiodic sets of Wang tiles », in Foundations of Computer Science: Potential - Theory - Cognition, p. 153–162, 1997.Google Scholar
  6. 6.
    Durand (B.), «Tilings and quasiperiodicity », Theoretical Computer Science, vol. 221, nº1-2, 1999, p. 61–75.Google Scholar
  7. 7.
    Durand (B.), «De la logique aux pavages », Theoretical Computer Science, vol. 281, nº1-2, 2002, p. 311–324.Google Scholar
  8. 8.
    Durand (B.), Levin (L. A.) and Shen (A.), «Complex tilings », in Proceedings of the Symposium on Theory of Computing, p. 732–739, 2001.Google Scholar
  9. 9.
    Durand (B.), Romashchenko (A.) and Shen (A.), «Fixed point and aperiodic tilings », preprint.Google Scholar
  10. 10.
    Gurevich (Y.) and Koriakov (I.), «A remark on Berger’s paper on the domino problem », in Siberian Journal of Mathematics, 13:459–463, 1972. (In Russian).Google Scholar
  11. 11.
    Hanf (W. P.), «Non-recursive tilings of the plane. I », Journal of Symbolic Logic, vol. 39, nº2, 1974, p. 283–285.Google Scholar
  12. 12.
    Lafitte (G.) and Weiss (M.), «Universal Tilings », in Proceedings of the Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science nº 4393, p. 367–380, 2007.Google Scholar
  13. 13.
    Lafitte (G.) and Weiss (M.), «A topological study of tilings », to appear in Proceedings of the conference on Theory and Aspects of Models of Computation , TAMC’08, 2008.Google Scholar
  14. 14.
    Lafitte (G.) and Weiss (M.), «Simulation between tilings », submitted to Computability in Europe, CIE’08, 2008.Google Scholar
  15. 15.
    Myers (D.), «Non-recursive tilings of the plane. II », Journal of Symbolic Logic, vol. 39, nº2, 1974, p. 286–294.Google Scholar
  16. 16.
    Robinson (R.), «Undecidability and nonperiodicity for tilings of the plane », Inventiones Mathematicae, vol. 12, 1971, p. 177–209.Google Scholar
  17. 17.
    Wang (H.), «Proving theorems by pattern recognition II », Bell System Technical Journal, vol. 40, 1961, p. 1–41.Google Scholar
  18. 18.
    Wang (H.), «Dominoes and the ∀∃∀-case of the decision problem », in Proceedings of the Symposium on Mathematical Theory of Automata, p. 23–55, 1962.Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Grégory Lafitte
    • 1
  • Michael Weiss
    • 2
  1. 1.Laboratoire d’Informatique Fondamentale de Marseille (LIF)CNRS – Aix-Marseille UniversitéF-13453 Marseille Cedex 13France
  2. 2.Centre Universitaire d’InformatiqueUniversité de Genève Battelle bâtiment A1227 CarougeSwitzerland

Personalised recommendations