Analysis of Periodic Clock Relations in Polychronous Systems

  • Hugo Metivier
  • Jean-Pierre Talpin
  • Thierry Gautier
  • Paul Le Guernic
Part of the IFIP – The International Federation for Information Processing book series (IFIPAICT, volume 271)


The polychronous(synchronous, multiclocked) language Signal is used for the design and analysis of reactive systems. For the purpose of modeling eventdriven systems, we consider an extension of the polychronousmodel of computation of Signal with periodic equations denoted by ultimately periodic infinite words. These equations express periodic constraints on the signals of programs, that can be used to enrich the existing clock calculusof Signal. Thanks to this more powerful clock calculus, the communications between processes using periodic equations can be analysed to guarantee their correctness. In particular, the maximal size of buffers is formally evaluated. We illustrate the design of so-defined periodic systems using a 4-stroke engine example.


Periodic Process Periodic Relation Language Signal Binary Word Periodic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Andr’e, F. Mallet, R. de Simone. Modeling time in UML. Research report ISRN I3S/RR- 2007-16-FR, I3S Laboratory, 2007.Google Scholar
  2. 2.
    C. Andr’e, F. Mallet, M-A. Peraldi. A multiform time approach to real-time system modeling. SIES, 2007.Google Scholar
  3. 3.
    A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The Synchronous Languages Twelve Years Later. Proceedings of the IEEE. IEEE, 2003.Google Scholar
  4. 4.
    J. Buck, S. Ha, E. Lee, D. Messerschmitt. Ptolemy: a framework for simulating and prototyping hetrogeneous systems. International Journal in Compuer Simulation, v4(2), 1994.Google Scholar
  5. 5.
    A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. N-synchronous Kahn networks: a relaxed model of synchrony for real-time systems. In POPL. ACM, 2006.Google Scholar
  6. 6.
    C. Dezan, P. Quinton. Verification of regular architectures using Alpha. In Adaptative Sensor Array Processing Workshop. IEEE Press, 1994.Google Scholar
  7. 7.
    G. Kahn. The semantics of a simple language for parallel programming. Information Processing, North Holland, 1974.Google Scholar
  8. 8.
    E. Kock, et al. Yapi: Application modeling for signal processing systems. Design Automation Conference. ACM, 2000.Google Scholar
  9. 9.
    P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system design. In Journal for Circuits, Systems and Computers. World Scientific, 2003 56 Hugo Metivier, Jean-Pierre Talpin,Google Scholar
  10. 10.
    H.Marchand, E. Rutten,M. Le Borgne and M. Samaan. Formal Verification of programs specified with Signal : application to a power transformer station controller. In Science of Computer Programming. Elsevier, 2001.Google Scholar
  11. 11.
    I. Smarandache, T. Gautier, P. Le Guernic. Validation ofmixed Signal-Alpha real-time systems through an affine calculus on clock synchronization constraints. In Formal Methods Europe. Springer, 1999.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hugo Metivier
    • 1
  • Jean-Pierre Talpin
    • 1
  • Thierry Gautier
    • 1
  • Paul Le Guernic
    • 1
  1. 1.(INRIA) Campus de Beaulieu35 042 Rennes Cedex France

Personalised recommendations