A Case Study in Model-driven Synthetic Biology

  • David Gilbert
  • Monika Heiner
  • Susan Rosser
  • Rachael Fulton
  • Xu Gu
  • Maciej Trybilo
Conference paper
Part of the IFIP – The International Federation for Information Processing book series (IFIPAICT, volume 268)


We report on a case study in synthetic biology, demonstrating the model-driven design of a self-powering electrochemical biosensor. An essential result of the design process is a general template of a biosensor, which can be instantiated to be adapted to specific pollutants. This template represents a gene expression network extended by metabolic activity. We illustrate the model-based analysis of this template using qualitative, stochastic and continuous Petri nets and related analysis techniques, contributing to a reliable and robust design.


Synthetic Biology Microbial Fuel Cell General Template Gene Expression Network Transcription Factor Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Bio] BioNessie. A biochemical pathway simulation and analysis tool. University of Glasgow,
  2. [BK02] F. Bause and P.S. Kritzinger. Stochastic Petri Nets. Vieweg, 2002.Google Scholar
  3. [CGP05] Y. Cao, D.T. Gillespie, and L.R Petzold. The slow-scale stochastic simulation algorithm. Journal of Chemical Physics, 122(1):014116+, 2005.Google Scholar
  4. [Cha] Charlie. A Tool for the Analysis of Place/Transition Nets.
  5. [DA05] R. David and H. Alla. Discrete, Continuous, and Hybrid Petri Nets. Springer, 2005.Google Scholar
  6. [FM07] R. Fulton and M. Marba. A Stochastic Model for a General Biosensor., Bioinformatics Research Centre, University of Glasgow, UK, 2007.
  7. [Fri] T. Friend. Minicap - Multi Parameter Sensitivity Analysis. Glasgow iGEm Team,
  8. [GHL07] D. Gilbert, M. Heiner, and S. Lehrack. A unifying framework for modelling and analysing biochemical pathways using Petri nets. In Proc. CMSB 2007, pages 200-216. LNCS/LNBI 4695, Springer, 2007.Google Scholar
  9. [Gil77] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25):2340-2361, 1977.Google Scholar
  10. [Gla07] Glasgow University Team at iGEM - International Genetically Engineered Machine Competition., Cited 20 Jan 2008, 2007.
  11. [HGGH07] C. Harkness, D. Gilbert, X. Gu, and M. Heiner. The use of Petri nets in the Glasgow iGEM project: ElectrEcoBlu - a Self-powering Electrochemical Biosensor., Bioinformatics Research Centre, University of Glasgow, UK, 2007.
  12. [HP06] M. Heinemann and S. Panke. Synthetic biology - putting engineering into biology. Bioinformatics, 22(22):2790-2799, 2006.Google Scholar
  13. [HRS08] M. Heiner, R. Richter, and M. Schwarick. Snoopy - A Tool to Design and Animate/Simulate Graph-Based Formalisms. In Proc. PNTAP 2008, associated to SIMU-Tools 2008. ACM digital library, 2008.Google Scholar
  14. [iGE07] iGEM - International Genetically Engineered Machine Competition, MIT., Cited 20 Jan 2008, 2007.
  15. [MAT] MATLAB. High-level language and interactive environment. MatWorks,
  16. [MBC+ 95] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing, John Wiley and Sons, 1995. 2nd Edition.Google Scholar
  17. [OAM+ 03] Y.Q. O’Malley, M.Y. Abdalla, M.L. McCormick, K.J. Reszka, G.M. Denning, and B.E. Britigan. Subcellular localization of Pseudomonas pyocyanin cytotoxicity in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol, 284(2):L420-430, 2003.Google Scholar
  18. [PGS+ 07] J.F. Parsons, B.T. Greenhagen, K. Shi, K. Calabrese, H. Robinson, and J.E. Ladner. Structural and functional analysis of the pyocyanin biosynthetic protein phzm from pseudomonas aeruginosa. Biochemistry, 46(7):1821-1828, 2007.Google Scholar
  19. [Sno] Snoopy. A tool to design and animate hierarchical graphs. BTU Cottbus, CS Dep., Scholar
  20. [SR97] L. F. Shampine and M. W. Reichelt. The MATLAB ODE Suite. SIAM Journal on Scientific Computing, 18:1-22, 1997.Google Scholar
  21. [Syn08], Cited 20 Jan 2008.
  22. [vHNM+ 00] J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch, D. Gilbert, and S. J. Wodak. Representing and analysing molecular and cellular function in the computer. J Biological Chemistry, 9-10(381):921-935, 2000.Google Scholar
  23. [Wil06] D.J. Wilkinson. Stochastic Modelling for System Biology. CRC Press, New York, 1st Edition, 2006.Google Scholar
  24. [WWR+ 98] B.M. Willardson, J.F. Wilkins, T.A. Rand, J.M. Schupp, K.K. Hill, P. Keim, and P.J. Jackson. Development and Testing of a Bacterial Biosensor for Toluene-Based Environmental Contaminants. Appl Environ Microbiol., 3(64):1006-1012, 1998.Google Scholar

Copyright information

© International Federation for Information Processing 2008

Authors and Affiliations

  • David Gilbert
    • 1
  • Monika Heiner
    • 2
  • Susan Rosser
    • 3
  • Rachael Fulton
    • 1
  • Xu Gu
    • 1
  • Maciej Trybilo
    • 1
  1. 1.Bioinformatics Research CentreUniversity of GlasgowGlasgowScotland, UK
  2. 2.Department of Computer ScienceBrandenburg University of TechnologyCottbusGermany
  3. 3.Institute of Biomedical and Life SciencesUniversity of GlasgowGlasgowUK

Personalised recommendations