Distributed Fault-Tolerant Robot Control Architecture Based on Organic Computing Principles

  • Adam El Sayed Auf
  • Marek Litza
  • Erik Maehle
Part of the IFIP – The International Federation for Information Processing book series (IFIPAICT, volume 268)

Abstract

Walking animals like insects show a great repertoire of reactions and behaviours in interaction with their environment. Moreover, they are very adaptive to changes in their environment and to changes of their own body like injuries. Even after the loss of sensors like antennas or actuators like legs, insects show an amazing fault tolerance without any hint of great computational power or complex internal fault models. Our most complex robots in contrast lack the insect abilities although computational power is getting better and better. Understanding biological concepts and learning from nature could improve our approaches and help us to make our systems more “life-like” and therefore more fault tolerant. This article introduces a control architectural approach based on organic computing principles using concepts of decentralization and self-organization, which is demonstrated and tested on a six-legged robotic platform. Beside explaining the organic robot control architecture, this study presents a leg coordination architecture extension to improve the robustness and dependability towards structural body modifications like leg amputations and compares experimental results with previous studies.

References

  1. 1).
    Brockmann W, Großpietsch K.-E, Maehle E, Mösch F: ORCA - Eine Organic Computing-Architektur für Fehlertoleranz in autonomen mobilen Robotern. Mitteilungen der GI/ITG-Fachgruppe Fehlertolerierende Rechensysteme, Nr. 33, 3-17, St. Augustin 2006Google Scholar
  2. 2).
    Brockmann, W, Maehle E, Mösch F: Organic Fault-Tolerant Control Architecture for Robotic Applications. 4th IARP/IEEE-RAS/EURON Workshop on Dependable Robots in Human Environments, Nagoya University/Japan 2005Google Scholar
  3. 3).
    Dürr V, Ebeling W: The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning. The Journal of Experimental Biology 208, 2237-2252, 2005CrossRefGoogle Scholar
  4. 4).
    Dürr V, Schmitz J, Cruse H: Behaviourbased modelling of hexapod locomotion: Linking biology and technical application. Arthropod Structure and Development, 33 (3), 237-250, 2004CrossRefGoogle Scholar
  5. 5).
    El Sayed Auf A, Mösch F, Litza M: How the Six-legged Walking Machine OSCAR Handles Leg Amputations. Proceedings of the Workshop on Bio-Inspired Cooperative and Adaptive Behaviours in Robots at the SAB IX, Rome 2006Google Scholar
  6. 6).
    Rosano H, Webb B: The control of turning in real and simulated stick insects. Proceedings of the Ninth International Conference on the Simulation of Adaptive Behaviour, Lecture Notes in Artificial Intelligence volume 4095, (2006)Google Scholar
  7. 7).
    El Sayed Auf, A; Larionova, S.; Litza, M.; Mösch, F.; Jakimovski, B.; Maehle, E.: Ein Organic Computing Ansatz zur Steuerung einer sechsbeinigen Laufmaschine. AMS, 233-239, Springer-Verlag, Berlin Heidelberg 2007Google Scholar

Copyright information

© International Federation for Information Processing 2008

Authors and Affiliations

  • Adam El Sayed Auf
    • 1
  • Marek Litza
    • 1
  • Erik Maehle
    • 1
  1. 1.Institute of Computer EngineeringUniversity of LübeckLübeckGermany

Personalised recommendations