The Coronin Family of Proteins pp 20-30

Part of the Subcellular Biochemistry book series (SCBI, volume 48)

Diversity of WD-Repeat proteins


The WD-repeat-containing proteins form a very large family that is diverse in both its function and domain structure. Within all these proteins the WD-repeat domains are thought to have two common features: the domain folds into a beta propeller; and the domains form a platform without any catalytic activity on which multiple protein complexes assemble reversibly. The fact that these proteins play such key roles in the formation of protein-protein complexes in nearly all the major pathways and organelles unique to eukaryotic cells has two important implications. It supports both their ancient and proto eukaryotic origins and supports a likely association with many genetic diseases.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paoli M. Protein folds propelled by diversity. Prog Biophys Mol Biol 2001; 76(1–2):103–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Smith TF, Gaitatzes C, Saxena K et al. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 1999; 24(5):181–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Kominami K, Ochotorena I, Toda T. Two F-box WD-repeat proteins Pop1 and Pop2 form hetero-and homo-complexes together with cullin-1 in the fission yeast SCF (Skp1-Cullin-1-F-box) ubiquitin ligase. Genes Cells 1998; 3:721–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Neer EJ. Heterotrimeric G-Proteins—Organizers of Transmembrane Signals. Cell 1995; 80(2):249–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Lambright DG, Sondek J, Bohm A et al. The 2.0 angstrom crystal structure of a heterotrimeric G protein. Nature 1996; 379(6563):311–19.PubMedCrossRefGoogle Scholar
  6. 6.
    Neer EJ, Smith TF. G protein heterodimers: New structures propel new questions. Cell 1996; 84(2):175–78.PubMedCrossRefGoogle Scholar
  7. 7.
    Wall MA, Coleman DE, Lee E et al. The Structure of the G-Protein Heterotrimer G(I-Alpha-1) Beta(1)Gamma(2). Cell 1995; 83(6):1047–58.PubMedCrossRefGoogle Scholar
  8. 8.
    Knol JC, Engel R, Blaauw M et al. The Phosducin-Like Protein PhLP1 Is Essential for Gß Dimer Formation in Dictyostelium discoideum. Mol Cell Biol 2005; 25(18):8393–400.PubMedCrossRefGoogle Scholar
  9. 9.
    Cabrera-Vera TM, Vanhauwe J, Thomas TO et al. Insights into G protein structure, function and regulation. Endocr Rev 2003; 24(6):765–81.PubMedCrossRefGoogle Scholar
  10. 10.
    Katanaev VL, Tomlinson A. Dual roles for the trimeric G protein Go in asymmetric cell division in Drosophila. Proc Natl Acad Sci USA 2006; 103(17):6524–29.PubMedCrossRefGoogle Scholar
  11. 11.
    Li Y, Sternweis PM, Charnecki S et al. Sites for G binding on the G protein subunit overlap with sites for regulation of Phospholipase C and Adenylyl. Cyclase J Biol Chem 1998; 273:16265–72.CrossRefGoogle Scholar
  12. 12.
    Panchenko MP, Saxena K, Li Y et al. Sites important for PLC beta(2) activation by the G protein beta gamma subunit map to the sides of the beta propeller structure. J Biol Chem 1998; 273(43):28298–304.PubMedCrossRefGoogle Scholar
  13. 13.
    Jing H, Takagi J, Liu JH et al. Archaeal surface layer proteins contain beta propeller, PKD and beta helix domains and are related to metazoan cell surface proteins. Structure 2002; 10(10):1453–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Kostlanova N, Mitchell EP, Lortat-Jacob H et al. The fucose-binding lectin from Ralstonia Solanacearum: a new type of beta-propeller architecture formed by oligomerisation and interacting with fucoside, fucosyllactose and plant xyloglucan. J Biol Chem 2005; 280(30):27839–27849.PubMedCrossRefGoogle Scholar
  15. 15.
    Scheel H, Tomiuk S, Hofmann K. A common protein interaction domain links two recently identified epilepsy genes. Hum Mol Genet 2002; 11(15):1757–62.PubMedCrossRefGoogle Scholar
  16. 16.
    van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 2003, 4:50.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhong R, Ye Z-H. Molecular and Biochemical Characterization of Three WD-Repeat-Domain-containing Inositol Polyphosphate 5-Phosphatases in Arabidopsis thaliana. Plant Cell Physiol 2004; 45(11):1720–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Mulder NJ, Apweiler R, Attwood TK et al. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 2003; 31(1):315–18.PubMedCrossRefGoogle Scholar
  19. 19.
    Appleton BA, Wu P, Wiesmann C. The crystal structure of murine coronin-1. Structure 2006; 14:87–89.PubMedCrossRefGoogle Scholar
  20. 20.
    Yu L, Gaitatzes C, Neer EJ et al. Thirty-plus functional families from a single motif. Protein Sci 2000; 9:2470–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Hisbergues M, Gaitatzes CG, Joset F et al. A noncanonical WD-repeat protein from the cyanobacterium Synechocystis PCC6803: Structural and functional study. Protein Sci 2001; 10(2):293–300.PubMedCrossRefGoogle Scholar
  22. 22.
    Rabiner LR. A Tutorial on Hidden Markov-Models and Selected Applications in Speech Recognition. Proc IEEE 1989; 77(2):257–86.CrossRefGoogle Scholar
  23. 23.
    Pons T, Hernandez L, Batista FR et al. Prediction of a common beta-propeller catalytic domain for fructosyltranferases of different origin and substrate specificity. Protein Sci 2000; 9:2285–91.PubMedGoogle Scholar
  24. 24.
    Terai Y, Morikawa N, Kawakami K et al. Accelerated evolution of the surface amino acids in the WD-repeat domain encoded by the hagoromo gene in an explosively speciated lineage of east African cichlid fishes. Mol Biol Evol 2002; 19(4):574–78.PubMedGoogle Scholar
  25. 25.
    Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 1998; 391:493–96.PubMedCrossRefGoogle Scholar
  26. 26.
    Gori F, Friedman L, Demay M. Wdr5, a novel WD repeat protein, regulates osteoblast and chondrocyte differentiation in vivo. J Musculoskelet Neuronal Interact 2005; 5(4):338–39.PubMedGoogle Scholar
  27. 27.
    Hendrickson TW, Perrone CA, Griffin P et al. IC138 is a WD-repeat dynein intermediate chain required for light chain assembly and regulation of flagellar bending. Mol Biol Cell 2004; 15(12):5431–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Blacque OE, Li C, Inglis PN et al. The WD Repeat-containing Protein IFTA-1 Is Required for Retrograde Intraflagellar Transport. MBC 2006; 17(12):5053–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Steimle PA, Naismith T, Licate L et al. WD repeat domains target Dictyostelium myosin heavy chain kinases by binding directly to myosin filaments. J Biol Chem 2001; 276(9):6853–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Tarricone C, Perrina F, Monzani S et al. Coupling PAF signaling to dynein regulation structure of LIS1 in complex with PAF-Acetylhydrolase. Neuron 2004; 44(5):809–21.PubMedGoogle Scholar
  31. 31.
    Cheng HL, He XY, Moore C. The essential WD repeat protein Swd2 has dual functions in RNA polymerase II transcription termination and lysine 4 methylation of histone H3. Mol Cell Biol 2004; 24(7):2932–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Tieu Q, Okreglak V, Naylor K et al. The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J Cell Biol 2002; 158(3):445–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Hoecker U, Tepperman JM, Quail PH. SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 1999; 284(5413):496–99.PubMedCrossRefGoogle Scholar
  34. 34.
    Yoon Y, Baek K, Jeong S et al. WD repeat-containing mitotic checkpoint proteins act as transcriptional repressors during interphase. FEBS Lett 2004; 575(1–3):23–29.PubMedCrossRefGoogle Scholar
  35. 35.
    Gubitz AK, Mourelatos Z, Abel L et al. Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins. J Biol Chem 2002; 277(7):5631–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Castets F, Rakitina T, Gaillard S et al. Zinedin, SG2NA and striatin are calmodulin-binding, WD repeat proteins principally expressed in the brain. J Biol Chem 2000; 275(26):19970–77.PubMedCrossRefGoogle Scholar
  37. 37.
    Kato H, Chen S, Kiyama H et al. Identification of a novel WD repeat—containing gene predominantly expressed in developing and regenerating neuron. J Biochem 2000; 128:923–32.PubMedGoogle Scholar
  38. 38.
    Gratenstein K, Heggestad AD, Fortun J et al. The WD-repeat protein GRWD1: Potential roles in myeloid differentiation and ribosome biogenesis. Genomics 2005; 85(6):762–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Cerna D, Wilson DK. The structure of sif2p, a WD repeat protein functioning in the SET3 corepressor complex. J Mol Biol 2005; 351(4):923–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen GQ, Courey AJ. Groucho/TLE family proteins and transcriptional repression. Gene 2000; 249(1–2):1–16.PubMedCrossRefGoogle Scholar
  41. 41.
    Song HY, Hasson P, Paroush Z et al. Groucho oligomerization is required for repression in vivo. Mol Cell Biol 2004; 24(10):4341–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Goto T, Kinoshita T. Maternal transcripts of mitotic checkpoint gene, Xbub3, are accumulated in the animal blastomeres of Xenopus early embryo. DNA Cell Biol 1999; 18(3):227–34.PubMedCrossRefGoogle Scholar
  43. 43.
    Yamagishi K, Nagata N, Yee KM et al. TANMEI/EMB2757 encodes a WD repeat protein required for embryo development in Arabidopsis. Plant Physiol 2005; 139(1):163–73.PubMedCrossRefGoogle Scholar
  44. 44.
    Li D, Roberts R. WD-repeat proteins: structure characteristics, biological function and their involvement in human diseases. Cell Mol Life Sci 2001; 58:2085–97.PubMedCrossRefGoogle Scholar
  45. 45.
    Benjafield AV, Jeyasingam CL, Nyholt DR et al. G-Protein ß3 subunit gene (GNB3) variant in causation of essential hypertension Hypertension 1998; 32:1094–97.PubMedGoogle Scholar
  46. 46.
    Handschug K, Sperling S, Yoon SJK et al. Triple A syndrome is caused by mutations in AAAS, a new WD-repeat protein gene. Hum Mol Genet 2001; 10(3):283–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Rietzler M, Bittner M, Kolanus W et al. The human WD repeat protein WAIT-1 specifically interacts with the cytoplasmic tails of beta 7-integrins J Biol Chem 1998; 273(42):27459–66.PubMedCrossRefGoogle Scholar
  48. 48.
    Halder T, Pawelec G, Kirkin AF et al. Isolation of novel HLA-DR restricted potential tumor-associated antigens from the melanoma cell line FM3. Cancer Res 1997; 57(15):3238–44.PubMedGoogle Scholar
  49. 49.
    Honore B, Baandrup U, Nielsen S et al. Endonuclein is a cell cycle regulated WD-repeat protein that is up-regulated in adenocarcinoma of the pancreas. Oncogene 2002; 21(7):1123–29.PubMedCrossRefGoogle Scholar
  50. 50.
    Chernova OB, Hunyadi A, Malaj E et al. A novel member of the WD-repeat gene family, WDR11, maps to the 10q26 region and is disrupted by a chromosome translocation in human glioblastoma cells. Oncogene 2001; 20(38):5378–92.PubMedCrossRefGoogle Scholar
  51. 51.
    Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14(15):1837–51.PubMedGoogle Scholar
  52. 52.
    Parisi MA, Doherty D, Eckert ML et al. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet 2006; 43(4):334–39.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.BioMolecular Engineering Research Center, College of EngineeringBoston UniversityBostonUSA

Personalised recommendations