Overview of the Gastrointestinal Microbiota

  • Vincent B. Young
  • Thomas M. Schmidt


The community of microbes that inhabits the mammalian intestinal tract exists in a symbiosis with their host. The structure of this community represents the combined effects of selection pressure on the part of the host and on the part of the microbes themselves. Through recent advances in the field of microbial ecology we are beginning to understand the forces that shape this complex community. We will review what is known about the interaction between the host and the indigenous microbial community. Following this dicussion we will introduce methods that have been used to study the structure, function and dynamics of this community.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Backhed F, Ley RE, Sonnenburg JL et al. Host-bacterial mutualism in the human intestine. Science 2005; 307(5717):1915–20.PubMedCrossRefGoogle Scholar
  2. 2.
    McCracken VJ, Lorenz RG. The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell Microbiol 2001; 3(1):1–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Lievin-Le Moal V, Servin AL. The Front Line of Enteric Host Defense against Unwelcome Intrusion of Harmful Microorganisms: Mucins, Antimicrobial Peptides and Microbiota. Clin Microbiol Rev 2006; 19(2):315–37.PubMedCrossRefGoogle Scholar
  4. 4.
    Eckburg PB, Bik EM, Bernstein CN et al. Diversity of the Human Intestinal Microbial Flora. Science 2005; 308:1635–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Magurran AE. Measuring Biological Diversity. Oxford, UK: Blackwell Science Ltd., 2004.Google Scholar
  6. 6.
    Moore WE, Holdeman LV. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 1974; 27(5):961–79.PubMedGoogle Scholar
  7. 7.
    Zoetendal EG, von Wright A, Vilpponen-Salmela T et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 2002; 68(7):3401–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Delgado S, Suarez A, Mayo B. Identification of Dominant Bacteria in Freces and Colonic Mucosa from Healthy Spanish Adults by Culturing and by 16S rDNA Sequence Analysis. Dig Dis Sci 2006; 51(4):744–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Delgado S, Ruas-Madiedo P, Suarez A et al. Interindividual differences in microbial counts and biochemical-associated variables in the feces of healthy spanish adults. Dig Dis Sci 2006;51(4):737–43.PubMedCrossRefGoogle Scholar
  10. 10.
    Ley RE, Backhed F, Turnbaugh P et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005; 102(31):11070–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124(4):837–48.PubMedCrossRefGoogle Scholar
  12. 12.
    Schloss PD, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 2005; 71(3):1501–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Tilman D. Niche tradeoffs, neutrality and community structure: a stochastic theory of resource competition, invasion and community assembly. Proc Natl Acad Sci USA 2004; 101(30):10854–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Cummings JH, Pomare EW, Branch WJ et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28(10):1221–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 2001; 81(3):1031–64.PubMedGoogle Scholar
  16. 16.
    Miller SJ. Cellular and physiological effects of short-chain fatty acids Mini Rev Med Chem 2004; 4(8):839–45.PubMedGoogle Scholar
  17. 17.
    Cuff MA, Shirazi-Beechey SP. The importance of butyrate transport to the regulation of gene expression in the colonic epithelium. Biochem Soc Trans 2004; 32(Pt 6):1100–2.PubMedGoogle Scholar
  18. 18.
    Daly K, Cuff MA, Fung F et al. The importance of colonic butyrate transport to the regulation of genes associated with colonic tissue homoeostasis. Biochem Soc Trans 2005; 33(Pt 4):733–5.PubMedGoogle Scholar
  19. 19.
    Hooper LV, Xu J, Falk PG et al. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 1999; 96(17):9833–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Bry L, Falk PG, Midtvedt T et al. A model of host-microbial interactions in an open mammalian ecosystem. Science 1996; 273(5280):1380–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Xu J, Bjursell MK, Himrod J et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 2003; 299(5615):2074–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Sonnenburg JL, Xu J, Leip DD et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005; 307(5717):1955–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Hooper LV, Wong MH, Thelin A et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001; 291(5505):881–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Sait L, Galic M, Strugnell RA et al. Secretory antibodies do not affect the composition of the bacterial microbiota in the terminal ileum of 10-week-old mice. Appl Environ Microbiol 2003; 69(4):2100–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Suzuki K, Meek B, Doi Y et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 2004; 101(7):1981–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Diaz RL, Hoang L, Wang J et al. Maternal adaptive immunity influences the intestinal microflora of suckling mice. J Nutr 2004; 134(9):2359–64.PubMedGoogle Scholar
  27. 27.
    Rinne M, Kalliomaki M, Arvilommi H et al. Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. J Pediatr 2005; 147(2):186–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Cole JR, Chai B, Farris RJ et al. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 2005; 33 (Database issue):D294–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Kuehl CJ, Wood HD, Marsh TL et al. Colonization of the Cecal Mucosa by Helicobacter hepaticus Impacts the Diversity of the Indigenous Microbiota. Infect Immun 2005; 73(10):6952–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Matsumoto M, Sakamoto M, Hayashi H et al. Novel phylogenetic assignment database for terminal restriction fragment length polymorphism analysis of human colonic microbiota. J Microbiol Methods 2005; 61(3):305–19.PubMedCrossRefGoogle Scholar
  31. 31.
    Sakamoto M, Hayashi H, Benno Y. Terminal restriction fragment length polymorphism analysis for human feacal microbiota and its application for analysis of complex bifidobacterial communities. Microbiol Immunol 2003; 47(2):133–42.PubMedGoogle Scholar
  32. 32.
    Young VB, Schmidt TM. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J Clin Microbiol 2004; 42(3):1203–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Zoetendal EG, Collier CT, Koike S et al. Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 2004; 134(2):465–72.PubMedGoogle Scholar
  34. 34.
    Polz MF, Cavanaugh CM. Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 1998; 64(10):3724–30.PubMedGoogle Scholar
  35. 35.
    Qiu X, Wu L, Huang H et al. Evaluation of PCR-generated chimeras, mutations and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 2001; 67(2):880–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Suzuki MT, Giovannoni SJ. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 1996; 62(2):625–30.PubMedGoogle Scholar
  37. 37.
    Manichanh C, Rigottier-Gois L, Bonnaud E et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 2006; 55(2):205–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Gill SR, Pop M, Deboy RT et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312(5778):1355–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA 2006; 103(26):10011–6.PubMedCrossRefGoogle Scholar
  40. 40.
    McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol 2006; 101(4):812–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Henderson AR. The bootstrap: a technique for data-driven statistics. Using computer-intensive analyses to explore experimental data. Clin Chim Acta 2005; 359(1–2):1–26.PubMedCrossRefGoogle Scholar
  42. 42.
    Baum DA, Smith SD, Donovan SS. Evolution. The tree-thinking challenge. Science 2005; 310(5750):979–80.PubMedCrossRefGoogle Scholar
  43. 43.
    Heck KJJ, Belle GV. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 1975; 56:1459–61.CrossRefGoogle Scholar
  44. 44.
    Gotelli NJ, Colwell RK. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 2001; 4(4):379–91.CrossRefGoogle Scholar
  45. 45.
    Chao A. Nonparametric estimation of the number of classes in a population. Scand J Stat 1984; 11:265–70.Google Scholar
  46. 46.
    Legendre P, Legendre L. Numerical Ecology. Amsterdam: Elsevier BV, 1998.Google Scholar
  47. 47.
    Rudi K, Maugesten T, Hannevik SE et al. Explorative multivariate analyses of 16S rRNA gene data from microbial communities in modified-atmosphere-packed salmon and coalfish. Appl Environ Microbiol 2004; 70(8):5010–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Pavoine S, Dufour AB, Chessel D. From dissimilarities among species to dissimilarities among communities: a double principal coordinate analysis. J Theor Biol 2004; 228(4):523–37.PubMedCrossRefGoogle Scholar
  49. 49.
    Martin AP. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 2002; 68(8):3673–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Oremland RS, Capone DG, Stolz JF et al. Whither or wither geomicrobiology in the era of ‘community metagenomics’. Nat Rev Microbiol 2005; 3(7):572–8.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Vincent B. Young
    • 1
  • Thomas M. Schmidt
    • 2
  1. 1.Department of Medicine, Division of Infectious DiseasesThe University of MichiganAnn ArborUSA
  2. 2.Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingUSA

Personalised recommendations