Advances in Autonomic Components & Services

  • Marco Aldinucci
  • Marco Danelutto
  • Giorgio Zoppi
  • Peter Kilpatrick

Hierarchical autonomic management of structured grid applications can be efficiently implemented using production rule engines. Rules of the form “precondition→ action” can be used to model the behaviour of autonomicmanagers in such a way that the autonomic control and the application management strategy are kept separate. This simplifies the manager design as well as user customization of autonomic manager policies.

We briefly introduce rule-based autonomic managers. Then we discuss an implementation of a GCM-like behavioural skeleton – a composite component modelling a standard parallelism exploitation pattern with its own autonomic controller – in SCA/Tuscany. The implementation uses the JBoss rules engine to provide an autonomic behavioural skeleton component and services to expose the component functionality to the standard service framework. Performance results are discussed and finally similarities and differences with respect to the ProActive-based reference GCM implementation are discussed briefly.

Keywords

Behavioural skeletons autonomic computing Service Component Architecture task farm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
  2. [2]
    Jboss rules home page, 2008. http://www.jboss.com/products/rules.
  3. [3]
    Tuscany home page, 2008. http://incubator.apache.org/tuscany/.
  4. [4]
    M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kilpatrick, D. Laforenza, and N. Tonel-lotto. Behavioural skeletons for component autonomic management on grids. In Core-GRID Workshop on Grid Programming Model, Grid and P2P Systems Architecture, Grid Systems, Tools and Environments, Heraklion, Crete, Greece, June 2007.Google Scholar
  5. [5]
    M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Dazzi, D. Laforenza, N. Tonel-lotto, and P. Kilpatrick. Behavioural skeletons in GCM: autonomic management of grid components. In Proc. of Intl. Euromicro PDP 2008: Parallel Distributed and network-based Processing, Toulouse, France, pages 54-63, Feb. 2008. IEEE.Google Scholar
  6. [6]
    M. Aldinucci, M. Danelutto, and P. Kilpatrick. Towards hierarchical management of au-tonomic components: a case study. Technical Report TR-0127, CoreGRID, 2008. Avail-able at http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr- 0127.pdf .
  7. [7]
    S. Bistarelli, U. Montanari, F. Rossi, Semiring-Based Constraint Logic Programming: Syntax and Semantics, ACM TOPLAS, Vol. 23, 2001Google Scholar
  8. [8]
    M. Beisiegel, H. Blohm, D. Booz et al. Service Component Architecture Building Sys-tems using a Service Oriented Architecture, A Joint Whitepaper by BEA, IBM, Inter-face21, IONA, Oracle, SAP, Siebel, Sybase. 2000, available at http://www.iona.com/devcenter/sca/SCA_White_Paper1_09.pdf
  9. [9]
    P. Boinot, R. Marlet, J. Noy é , G. Muller, and C. Cosell. A declarative approach for designing and developing adaptive components. In Proc. of the 15th Intl. Conference on Automated Software Engineering, pages 111-119. IEEE, 2000.Google Scholar
  10. [10]
    J. Buisson, F. Andr é, and J.-L. Pazat. Afpac: Enforcing consistency during the adaptation of a parallel component. Scalable Computing: Practice and Experience, 7(3):83-95, 2006Google Scholar
  11. [11]
    M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel programming. Parallel Computing, 30(3):389-406, 2004.CrossRefGoogle Scholar
  12. [12]
    CoreGRID NoE deliverable series, Prog. Model Institute. D.PM.04 - Basic Features of the Grid Component Model (assessed), Feb. 2007. http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf.
  13. [13]
    CoreGRID NoE deliverable series, Prog. Model Institute. D.PM.11 - GCM experience: in- side the single component and beyond components, Feb. 2008. http://www.coregrid. net/mambo/content/view/428/292/.
  14. [14]
    M. Danelutto and G. Zoppi. Behavioural skeletons meeting Services. In Proceedings of PAPP’08. Springer Verlag, LNCS No. 5101, pages 146-153, June 2008. Krakow, Poland.Google Scholar
  15. [15]
    H. Gonz ález-V élez. Self-adaptive skeletal task farm for computational grids. Parallel Comput., 32(7):479-490, 2006.CrossRefGoogle Scholar
  16. [16]
    GridCOMP. GridCOMP web page, 2007. http://gridcomp.ercim.org.
  17. [17]
    ProActive home page, 2006. http://www-sop.inria.fr/oasis/proactive/.
  18. [18]
    S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in grid computing: Research articles. Concurr. Comput. : Pract. Exper., 17(2-4):235-257, 2005.CrossRefGoogle Scholar
  19. [19]
    G. Wrzesinska, J. Maassen, and H. E. Bal. Self-adaptive applications on the grid. In: PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of parallel programming, pages 121-129, New York, NY, USA, 2007. ACM.CrossRefGoogle Scholar
  20. [20]
    G. Zoppi. Componenti Avanzati GCM/SCA, 2008. Dept. Computer Science, Univ. of Pisa. 2nd level graduation thesis, in Italian. http://etd.adm.unipi.it/theses/available/etd- 01302008- 103715/

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marco Aldinucci
    • 1
  • Marco Danelutto
    • 1
  • Giorgio Zoppi
    • 1
  • Peter Kilpatrick
    • 2
  1. 1.Dept. Computer ScienceUniversity of PisaPisa
  2. 2.Dept. Computer ScienceQueen's University BelfastUK

Personalised recommendations