Advertisement

Five Year Prediction of the Number of Hurricanes that make United States Landfall

  • Stephen Jewson
  • Enrica Bellone
  • Thomas Laepple
  • Kechi Nzerem
  • Shree Khare
  • Manuel Lonfat
  • Adam O’Shay
  • Jeremy Penzer
  • Katie Coughlin
Chapter

Abstract

The insurance industryis interested in five-year predictions of the number of Atlantic hurricanes which will make landfall in the United States. Here we describe a suite of models developed by Risk Management Solutions, Inc. to make such predictions. These models represent a broad spectrum of view-points to be used as a basis for an expert elicitation.

Keywords

Root Mean Square Error Atlantic Multidecadal Oscillation Expert Elicitation Northern Hemisphere Temperature Atlantic Hurricane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

10. References

  1. Bellone, et al., 2007: Statistical testing of the proportion of hurricanes making landfall, in preparation.Bellone, et al., 2007: Statistical testing of the proportion of hurricanes making landfall, in preparation.Google Scholar
  2. Bengtsson, 2001: Weather - Hurricane threats, Science, 293, 440–441.CrossRefGoogle Scholar
  3. Binter, et al., 2006: Year ahead prediction of US landfalling hurricane numbers: the optimal combination of multiple levels of activity since 1900, http://www.arxiv.org/abs/physics/0611070, 7 Nov. 2006.Binter, et al., 2006: Year ahead prediction of US landfalling hurricane numbers: the optimal combination of multiple levels of activity since 1900, http://www.arxiv.org/abs/physics/0611070, 7 Nov. 2006.Google Scholar
  4. Binter, et al., 2007a: Statistical modeling of the relationship between main development region sea surface temperature and Atlantic basin hurricane numbers, http://www.arxiv.org/abs/physics/0701170, 29 Jan. 2007.Binter, et al., 2007a: Statistical modeling of the relationship between main development region sea surface temperature and Atlantic basin hurricane numbers, http://www.arxiv.org/abs/physics/0701170, 29 Jan. 2007.Google Scholar
  5. Binter, et al., 2007b: Statistical modeling of the relationship between main development region sea surface temperature and landfalling Atlantic basin hurricane numbers, http://www.arxiv.org/abs/physics/0701173, 15 Jan. 2007.Binter, et al., 2007b: Statistical modeling of the relationship between main development region sea surface temperature and landfalling Atlantic basin hurricane numbers, http://www.arxiv.org/abs/physics/0701173, 15 Jan. 2007.Google Scholar
  6. Bove, M.C., ., 1998: Effect of El Nino on U.S. Landfalling Hurricanes, Bull. Am. Meteorol. Soc., 79, 2477–2482.CrossRefGoogle Scholar
  7. Camargo, and Sobel, 2005: Western North Pacific Tropical Cyclone Intensity and ENSO, J. Climate, 18, 2996–3006.CrossRefGoogle Scholar
  8. DeMaria, M., ., 1993: Upper-level angular momentum fluxes and tropical cyclone intensity change, J. Atmos. Sci., 50, 1133–1147.CrossRefGoogle Scholar
  9. De Maria, 1996: The effect of vertical shear on tropical cyclone intensity change, J. Atmos. Sci., 53, 2076–2087.CrossRefGoogle Scholar
  10. Elsner, J.B., and C.P. Schmertmann, 1993: Improving Extended-Range Seasonal Predications of Intense Atlantic Hurricane Activity, Weather and Forecasting, 121, 345–351.CrossRefGoogle Scholar
  11. Elsner, J.B., ., 1999: Fluctuations in North Atlantic Hurricane Frequency, J. Climate, 12, 427–437.CrossRefGoogle Scholar
  12. Elsner, J.B., ., 2000: Spatial variations in major U.S. hurricane activity: Statistics and a physical mechanism, J. Climate, 13, 2293–2305.CrossRefGoogle Scholar
  13. Elsner, J.B., ., 2001: Changes in the rates of North Atlantic major hurricane activity during the 29th Century, Geophysical Research Letters, 27, 1743–1746.CrossRefGoogle Scholar
  14. Elsner, J.B., ., 2004: Detecting shifts in hurricane rates using a Markov Chain Monte Carlo approach, J. Climate, 17, 2652–2666.CrossRefGoogle Scholar
  15. Elsner, J.B., 2006: Evidence in support of the climate change-Atlantic hurricane hypothesis, Geophysical Research Letters, v33, L16705, doi:10.1029/2006GL026869, August 2006.Elsner, J.B., 2006: Evidence in support of the climate change-Atlantic hurricane hypothesis, Geophysical Research Letters, v33, L16705, doi:10.1029/2006GL026869, August 2006.Google Scholar
  16. Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years, Nature, 436, 686–688.CrossRefGoogle Scholar
  17. Enfield, D.B., and L. Cid-Serrano, 2006: Projecting the risk of future climate shifts. Int’l J. Climatology, 26: 885–895.CrossRefGoogle Scholar
  18. Epstein, E.S., 1985: Statistical inference and prediction in climatology: a Bayesian approach, Meteorol. Monographs, 20. Am. Meteorol. Soc., p.199.Google Scholar
  19. George, E.I., ., 2006: Improved minimax prediction under Kullback-Leibler loss, Annals of Statistics, 34, 78–91.CrossRefGoogle Scholar
  20. Goldenberg, S.B., and L.J. Shapiro, 1996: Physical mechanisms for the association of El Nino and West African rainfall with Atlantic major hurricane activity, J. Climate, 9, 1169–1187.CrossRefGoogle Scholar
  21. Goldenberg, S.B., ., 2001: The recent increase in Atlantic hurricane activity: Causes and Implications, Science, 293, 474–479.CrossRefGoogle Scholar
  22. Gray, W.M., 1968: Global view of the origin of tropical disturbances and storms, Mon. Wea. Rev., 96, 669–700.CrossRefGoogle Scholar
  23. Gray, S.T., et al., 2004: A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D., GRL, 31, No. 12, L1220510.1029/2004GL019932.Gray, S.T., et al., 2004: A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D., GRL, 31, No. 12, L1220510.1029/2004GL019932.Google Scholar
  24. Hall, T., and S. Jewson, 2005: Statistical modeling of tropical cyclone tracks: a semi-parametric model for the mean trajectory, http://www.arxiv.org/abs/physics/0503231, 31 Mar. 2005.Hall, T., and S. Jewson, 2005: Statistical modeling of tropical cyclone tracks: a semi-parametric model for the mean trajectory, http://www.arxiv.org/abs/physics/0503231, 31 Mar. 2005.Google Scholar
  25. Hall, T., and S. Jewson, 2006a: Comparing classical and Bayesian methods for predicting hurricane landfall rates, http://arxiv.org/abs/physics/0611006, 01 Nov. 2006.Hall, T., and S. Jewson, 2006a: Comparing classical and Bayesian methods for predicting hurricane landfall rates, http://arxiv.org/abs/physics/0611006, 01 Nov. 2006.Google Scholar
  26. Hall, T., and S. Jewson, 2006b: Predicting hurricane regional landfall rates: comparing local and basin-wide track model approaches, http://arxiv.org/abs/physics/0611103, 10 Nov. 2006.Hall, T., and S. Jewson, 2006b: Predicting hurricane regional landfall rates: comparing local and basin-wide track model approaches, http://arxiv.org/abs/physics/0611103, 10 Nov. 2006.Google Scholar
  27. Hall, T., and S. Jewson, 2007: SSTand North American tropical cyclone landfall: a statistical modeling study, http://arxiv.org/abs/0801.1013Hall, T., and S. Jewson, 2007: SSTand North American tropical cyclone landfall: a statistical modeling study, http://arxiv.org/abs/0801.1013Google Scholar
  28. Hansen, J.E., and S. Lebedeff, 1987: Global trends of measured surface air temperature. J. Geophys. Res., 92, 13345–13372.CrossRefGoogle Scholar
  29. Hoyos, ., 2006: Deconvolution of the factors contributing to the increase in global hurricane intensity, Science, 312, 94–97.CrossRefGoogle Scholar
  30. Jarrell, J.D., et al., 1992: Hurricane Experience Levels of Coastal County Populations from Texas to Maine, NOAA Technical Memorandum, NWS TPC-1.Jarrell, J.D., et al., 1992: Hurricane Experience Levels of Coastal County Populations from Texas to Maine, NOAA Technical Memorandum, NWS TPC-1.Google Scholar
  31. Jarvinen, ., 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886-1983: Contents, limitations, and uses. NOAA Technical Memorandum NWS NHC 22, Coral Gables, Florida, p.21.Google Scholar
  32. Jewson, S., 2004: The Relative Importance of Trends, Distributions and the Number of Years of Data in the Pricing of Weather Options, http://ssrn.com/abstract=516503, 11 March 2004.Jewson, S., 2004: The Relative Importance of Trends, Distributions and the Number of Years of Data in the Pricing of Weather Options, http://ssrn.com/abstract=516503, 11 March 2004.Google Scholar
  33. Jewson, S., 2004: Probabilistic forecasting of temperature: comments on the Bayesian model averaging approach, http://www.arxiv.org/abs/physics/0409127, 24 Sept. 2004.Jewson, S., 2004: Probabilistic forecasting of temperature: comments on the Bayesian model averaging approach, http://www.arxiv.org/abs/physics/0409127, 24 Sept. 2004.Google Scholar
  34. Jewson, S., and J. Penzer, 2004: Weather derivative pricing and the detrending of meteorological data: an empirical evaluation of damped linear detrending, http://ssrn.com/abstract=623381, 26 Nov. 2004.Jewson, S., and J. Penzer, 2004: Weather derivative pricing and the detrending of meteorological data: an empirical evaluation of damped linear detrending, http://ssrn.com/abstract=623381, 26 Nov. 2004.Google Scholar
  35. Jewson, S., and J. Penzer, 2005: Weather derivative pricing and the detrending of meteorological data: three alternative representations of damped linear detrending, http://ssrn.com/abstract=653241, 24 Jan. 2005.Jewson, S., and J. Penzer, 2005: Weather derivative pricing and the detrending of meteorological data: three alternative representations of damped linear detrending, http://ssrn.com/abstract=653241, 24 Jan. 2005.Google Scholar
  36. Jewson, S., et al., 2005: Year ahead prediction of US landfalling hurricane numbers: the optimal combination of long and short baselines, http://www.arxiv.org/abs/physics/0512113, 13 Dec. 2005.Jewson, S., et al., 2005: Year ahead prediction of US landfalling hurricane numbers: the optimal combination of long and short baselines, http://www.arxiv.org/abs/physics/0512113, 13 Dec. 2005.Google Scholar
  37. Jewson, S., and J. Penzer, 2006a: An objective change-point analysis of historical Atlantic hurricane numbers, http://www.arxiv.org/abs/physics/0611071, 7 Nov. 2006.Jewson, S., and J. Penzer, 2006a: An objective change-point analysis of historical Atlantic hurricane numbers, http://www.arxiv.org/abs/physics/0611071, 7 Nov. 2006.Google Scholar
  38. Jewson, S., and J. Penzer, 2006b: An objective change-point analysis of landfalling historical Atlantic hurricane numbers, http://www.arxiv.org/abs/physics/0611071, 7 Nov. 2006.Jewson, S., and J. Penzer, 2006b: An objective change-point analysis of landfalling historical Atlantic hurricane numbers, http://www.arxiv.org/abs/physics/0611071, 7 Nov. 2006.Google Scholar
  39. S., and Jewson, J. Penzer, 2006c: Estimating trends in weather series: consequences for pricing derivatives, Studies in Non-linear Dynamics and Econometrics, 10, No. 3, Article 9.S., and Jewson, J. Penzer, 2006c: Estimating trends in weather series: consequences for pricing derivatives, Studies in Non-linear Dynamics and Econometrics, 10, No. 3, Article 9.Google Scholar
  40. Jewson, S., et al., 2006: Year ahead prediction of US landfalling hurricane numbers: the optimal combination of long and short baselines for intense hurricanes, http://www.arxiv.org/abs/physics/0606192, 21 Jun. 2006.Jewson, S., et al., 2006: Year ahead prediction of US landfalling hurricane numbers: the optimal combination of long and short baselines for intense hurricanes, http://www.arxiv.org/abs/physics/0606192, 21 Jun. 2006.Google Scholar
  41. Jewson, S., et al., 2007a: Predicting landfalling hurricane numbers from sea surface temperatures: theoretical comparisons of direct and indirect approaches, http://arxiv.org/abs/physics/0701176, 29 Jan 2007.Jewson, S., et al., 2007a: Predicting landfalling hurricane numbers from sea surface temperatures: theoretical comparisons of direct and indirect approaches, http://arxiv.org/abs/physics/0701176, 29 Jan 2007.Google Scholar
  42. Jewson, S., et al., 2007b: Predicting hurricane numbers from sea surface temperature: closed-form expressions for the mean, variance and standard error of the number of hurricanes, http://arxiv.org/abs/physics/0701167, 15 Jan. 2007.Jewson, S., et al., 2007b: Predicting hurricane numbers from sea surface temperature: closed-form expressions for the mean, variance and standard error of the number of hurricanes, http://arxiv.org/abs/physics/0701167, 15 Jan. 2007.Google Scholar
  43. Jewson, S., et al., 2007c: Predicting landfalling hurricane numbers from basin hurricane numbers: basic statistical analysis, http://arxiv.org/abs/physics/0701166, 29 Jan. 2007.Jewson, S., et al., 2007c: Predicting landfalling hurricane numbers from basin hurricane numbers: basic statistical analysis, http://arxiv.org/abs/physics/0701166, 29 Jan. 2007.Google Scholar
  44. Kerr, 2005: Is Katrina a Harbinger of Still More Powerful Hurricanes?, Science, 309, 1807.CrossRefGoogle Scholar
  45. Khare, and Jewson, 2005a: Year ahead prediction of US landfalling hurricane numbers, http://www.arxiv.org/abs/physics/0507165, 21 July 2005.Khare, and Jewson, 2005a: Year ahead prediction of US landfalling hurricane numbers, http://www.arxiv.org/abs/physics/0507165, 21 July 2005.Google Scholar
  46. Khare, and Jewson, 2005b: Year ahead prediction of US landfalling hurricane numbers: intense hurricanes, http://www.arxiv.org/abs/physics/0512092, 10 Dec 2005.Khare, and Jewson, 2005b: Year ahead prediction of US landfalling hurricane numbers: intense hurricanes, http://www.arxiv.org/abs/physics/0512092, 10 Dec 2005.Google Scholar
  47. Klotzbach, 2006: Trends in global tropical cyclone activity over the past twenty years, 1986-2005, Geophys. Res. Letts., 35, L10805, doi: 10.1029/2006GL025881.CrossRefGoogle Scholar
  48. Knutson, T.R., and R.E. Tuleya, 1999: Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system, Climate Dynamics, 15, 503–519.CrossRefGoogle Scholar
  49. Knutson, T.R., and R.E. Tuleya, 2004:Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization, J.Climate, 17, 3477–3495.CrossRefGoogle Scholar
  50. Komaki, F., 2001: A shrinkage predictive distribution for multivariate normal observables, Biometrika, 88, 859–864.CrossRefGoogle Scholar
  51. Laepple, T., et al., 2007a: Correlations between hurricane numbers and sea surface temperature: why does the correlation disappear at landfall?, http://arxiv.org/abs/physics/0701175, 15 Jan. 2007.Laepple, T., et al., 2007a: Correlations between hurricane numbers and sea surface temperature: why does the correlation disappear at landfall?, http://arxiv.org/abs/physics/0701175, 15 Jan. 2007.Google Scholar
  52. Laepple, T., et al., 2007b: Five year prediction of sea surface temperature in the tropical Atlantic: a comparison of simple statistical methods, http://arxiv/org/abs/physics/0701162, 15 Jan. 2007.Laepple, T., et al., 2007b: Five year prediction of sea surface temperature in the tropical Atlantic: a comparison of simple statistical methods, http://arxiv/org/abs/physics/0701162, 15 Jan. 2007.Google Scholar
  53. Laepple, T., and S. Jewson, 2007: Five year ahead prediction of sea surface temperature in tropical Atlantic: a comparison between IPCC climate models and simple statistical models, http://arxiv.org/abs/physics/0701165, 15 Jan. 2007.Laepple, T., and S. Jewson, 2007: Five year ahead prediction of sea surface temperature in tropical Atlantic: a comparison between IPCC climate models and simple statistical models, http://arxiv.org/abs/physics/0701165, 15 Jan. 2007.Google Scholar
  54. Landsea, C.W., 1998: The extremely active 1995 Atlantic hurricane season: environmental conditions and verification of seasonal forecasts, Mon. Wea. Rev., 126, 1174–1193.CrossRefGoogle Scholar
  55. Landsea, C.W., ., 1999: Atlantic basin hurricanes: Indices of climatic changes, Climatic Change, 42, 89–129.CrossRefGoogle Scholar
  56. Lavielle, M., and M. Labarbierx>, 2001: An application of MCMC methods for the multiple change-points problem, Signal Process, 81, 39–53.CrossRefGoogle Scholar
  57. Litterman, R.B., 1986: Forecasting with Bayesian vector autoregressions -- 5 years of experience, The Journal of Business and Economic Statistics, 4, 25–38.CrossRefGoogle Scholar
  58. Lonfat, M., A. Boissonnade, and R. Muir-Wood, 2007:Atlantic basin, U.S. and Caribbean landfall activity rates over the 2006-2010 period: an insurance industry perspective. Tellus A, 59, 499–510. CrossRefGoogle Scholar
  59. Lyons, S.W., 2004: U.S. Tropical Cyclone Landfall Variability: 1950-2002, Weather and Forecasting, 19, 473–480.CrossRefGoogle Scholar
  60. Mann, and Emanuel, 2006: Atlantic Hurricane Trends Linked to Climate Change, EOS Transactions, AGU, 87, 233–244.CrossRefGoogle Scholar
  61. Meagher, J., and S. Jewson, 2006: Year-ahead prediction of hurricane season sea surface temperature, http://www.arxiv.org/abs/physics/0606185, 21 June 2006.Meagher, J., and S. Jewson, 2006: Year-ahead prediction of hurricane season sea surface temperature, http://www.arxiv.org/abs/physics/0606185, 21 June 2006.Google Scholar
  62. Nzerem, K., et al., 2006: Change-point detection in the historical hurricane number time-series: why can’t we detect change-points at US landfall?, http://arxiv.org/abs/physics/0611107, 10 Nov. 2006.Nzerem, K., et al., 2006: Change-point detection in the historical hurricane number time-series: why can’t we detect change-points at US landfall?, http://arxiv.org/abs/physics/0611107, 10 Nov. 2006.Google Scholar
  63. Peixoto, J.P., and A.H. Oort, 1992: Physics of Climate, American Institute of Physics, p.520.Peixoto, J.P., and A.H. Oort, 1992: Physics of Climate, American Institute of Physics, p.520.Google Scholar
  64. Raper, S.C.B., 1993: Observational data on the relationships between climatic change and the frequency and magnitude of severe tropical storms. Climate and Sea Level Change: Observations, Projections and Implications, R.A. Warrick, E.M. Barrow and T.M.L. Wigley, Eds., Cambridge University Press, Cambridge, UK, 192–212.Google Scholar
  65. Rayner, ., 2002: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, D14 4407, doi:10.1029/2002JD002670.Google Scholar
  66. Saunders, M.A., and A.R. Harris, 1997: Statistical evidence links exceptional 1995 Atlantic hurricane season to record sea warming, Geophys. Res. Letts., 24, 1255–1258..CrossRefGoogle Scholar
  67. Saunders, M.A., and A.S. Lea, 2005: Seasonal prediction of hurricane activity reaching the coast of the United States, Nature, 434, 1005–1008. CrossRefGoogle Scholar
  68. Schlesinger, M.E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65-70 years, Nature, 367, 723–726.CrossRefGoogle Scholar
  69. Shapiro, L.J., 1982: Hurricane climate fluctuations. Part I: Patterns and cycles, Mon. Wea. Rev., 110, 1014–1023.CrossRefGoogle Scholar
  70. Shapiro, L.J., and S.B. Goldenberg, 1989: Atlantic sea surface temperatures and tropical cyclone formation, J. Climate, 11, 578–590.CrossRefGoogle Scholar
  71. Shephard, N., 1993: Distribution of the ML estimator of a MA(1) and a local level model, Econometric Theory, 9, 377–401.CrossRefGoogle Scholar
  72. Smith, D. ., 2007: Improved surface temperature prediction for the coming decade from a global climate model, Science, 317, 796–799.CrossRefGoogle Scholar
  73. Solow, A.R., and L. Moore, 2000: Testing for a trendin a partially incomplete hurricane record, J. Climate, 13, 2293–2305.CrossRefGoogle Scholar
  74. Sriver, R.L., and M. Huber, 2006: Low frequency variability in globally integrated tropical cyclone power dissipation, Geophysical Res. Letts., 33, L11705 doi:10.1029/2006GL026167.CrossRefGoogle Scholar
  75. Sutton, R.T., and D.L.R. Hodson, 2005: Atlantic Forcing of North American and European summer climate; Science, 309, 115–118.CrossRefGoogle Scholar
  76. Trenberth, K., 2005: Uncertainty in Hurricanes and Global Warming; Science, 17, 1753–1754, 2005.CrossRefGoogle Scholar
  77. Trendberth, K.E., and D.J. Shea, 2006: Atlantic hurricanes and natural variability in 2005, GRL, 33, doi:10.1029/2006GL026894.Trendberth, K.E., and D.J. Shea, 2006: Atlantic hurricanes and natural variability in 2005, GRL, 33, doi:10.1029/2006GL026894.Google Scholar
  78. Vecchi, G.A., and B.J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming, GRL, 34, doi:10.1029/2006GL028905.Vecchi, G.A., and B.J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming, GRL, 34, doi:10.1029/2006GL028905.Google Scholar
  79. Vitart, F., and J.L. Anderson, 2001: Sensitivity of Atlantic Tropical Storm Frequency to ENSO and Interdecadal Variability of SSTs in an Ensemble of AGCM Integrations, J. Climate, 14, 533–545.CrossRefGoogle Scholar
  80. Webster, P.J., 2005: Changes in Tropical Cyclone Number, Duration and Intensity in a Warming Environment, Science, 309, 1844–1846.CrossRefGoogle Scholar
  81. Zehr, R.M., 1992: Tropical cyclogenesis in the Western Pacific, NOAA Technical Report NESDIS, 61, NOAA; Washington D.C., USA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Stephen Jewson
    • 1
  • Enrica Bellone
    • 1
  • Thomas Laepple
    • 1
    • 2
  • Kechi Nzerem
    • 1
  • Shree Khare
    • 1
  • Manuel Lonfat
    • 1
  • Adam O’Shay
    • 1
  • Jeremy Penzer
    • 1
    • 3
  • Katie Coughlin
    • 1
  1. 1.Risk Management SolutionsLondonUK
  2. 2.Alfred-Wegener InstituteBremerhavenGermany
  3. 3.London School of EconomicsLondonUK

Personalised recommendations