Advertisement

Keywords

Banach Algebra Triple System Carter Subgroup Steiner Minimal Tree Fuzzy Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berlekamp, E.R.: ‘Factoring polynomials over finite fields’, Bell Syst. Techn. J. 46 (1967), 1853–1859.MathSciNetGoogle Scholar
  2. [2]
    Berlekamp, E.R.: ‘Factoring polynomials over large finite fields’, Math. Comput. 24,no. 11 (1970), 713–735.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Cantor, D.G., and Zassenhaus, H.: ‘A new algorithm for factoring polynomials over finite fields’, Math. Comput. 36,no. 154 (1981), 587–592.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Coppersmith, D., and Winograd, S.: ‘Matrix multiplication via arithmetic progressions’, J. Symbolic Comput. 9 (1990), 251–280.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Gathen, J. von zur, and Gerhard, J.: Modern computer algebra, Cambridge Univ. Press, 1999.Google Scholar
  6. [6]
    Gathen, J. von zur, and Hartlieb, S.: ‘Factoring modular polynomials’, J. Symbolic Comput. 26,no. 5 (1998), 583–606.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Gathen, J. von zur, and Shoup, V.: ‘Computing Frobe-nius maps and factoring polynomials’, Comput. Complexity 2 (1992), 187–224.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Geddes, K.O., Czapor, S.R., and Labahn, G.: Algorithms for computer algebra, Kluwer Acad. Publ., 1992.Google Scholar
  9. [9]
    Hoeij, M. van: ‘Factoring polynomials and the knapsack problem’, http://www.Math.fsu.edu/~hoeij/knapsack/paper/knapsack.ps (2000).
  10. [10]
    Kaltofen, E., and Trager, B.M.: ‘Computing with polynomials given by black boxes for their evaluations: Greatest common divisors, factorization, separation of numerators and denominators’, J. Symbolic Comput. 9 (1990), 301–320.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Lenstra, A.K., H.W. Lenstra, Jr., and Lovász, L.: ‘Factoring polynomials with rational coefficients’, Math. Ann. 261 (1982), 515–534.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Shparlinski, I.E.: Finite fields: theory and computation, Kluwer Acad. Publ., 1999.Google Scholar
  13. [13]
    Waerden, B.L. van der: ‘Eine Bemerkung über die Unzer-legbarkeit von Polynomen’, Math. Ann. 102 (1930), 738–739.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Yap, Chee Keng: Fundamental problems of algorithmic algebra, Oxford Univ. Press, 2000.Google Scholar

References

  1. [1]
    Abramov, V., and Lumiste, Ü.: ‘Superspace with underlying Banach fiber bundle of connections and the supersymmetries of effective action’, Soviet Math. (Iz. VUZ) 30,no. 1 (1986), 1–13.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Becchi, C., Rouet, A., and Stora, R., Commun. Math. Phys. 42 (1975), 127.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Berezin, F.A.: The method of second quantization, Acad. Press, 1966.Google Scholar
  4. [4]
    Bonora, L., and Tonin, M.: ‘Superfield formulation of extended BRS symmetry’, Phys. Lett. 98B (1981), 48–50.Google Scholar
  5. [5]
    Faddeev, L.D., and Popov, V.N., Phys. Lett. B25 (1967), 29.Google Scholar
  6. [6]
    Feynman, R.P., Acta Physica Polonica 24 (1963), 697.MathSciNetGoogle Scholar
  7. [7]
    Lumiste, Ü.: ‘Connections in geometric interpretation of Yang-Mills and Faddeev-Popov fields’, Soviet Math. (Iz. VUZ) 27,no. 1 (1983), 51–62.zbMATHGoogle Scholar
  8. [8]
    Ne’eman, Y., and Thierry-Mieg, J.: ‘Geometrical gauge theory of ghost and Goldstone fields and of ghost symmetries’, Proc. Nat. Acad. Sci. USA 77,no. 2 (1980), 720–723.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Ojima, I.: ‘Another BRS transformation’, Progr. Theoret. Phys. 64,no. 2 (1980), 625–638.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Tyutin, I.V., Preprint PhIAN 39 (1975).Google Scholar
  11. [11]
    Witten, E.: ‘Topological quantum field theory’, Comm. Math. Phys. 117 (1988), 353–386.zbMATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Robinson, D.J.S.: Finiteness conditions and generalized soluble groups, Parts 1–2, Springer, 1972.Google Scholar
  2. [2]
    Scott, W.R.: Group theory, Dover, reprint, 1987.Google Scholar

References

  1. [1]
    Fedosov, B.: ‘Trace formula for Schrodinger operator’, Russian J. Math. Phys. 1 (1993), 447–463.zbMATHMathSciNetGoogle Scholar

References

  1. [1]
    BAJAJ, C: ‘The algebraic degree of geometric optimization problems.’, Discr. Comput. Geom. 3 (1988), 177–191.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Boltyanski, V., Martini, H., and Soltan, V.: Geometric methods and optimization problems, Kluwer Acad. Publ., 1999.Google Scholar
  3. [3]
    Chakerian, G.D., and Ghandehari, M.A.: ‘The Fermat problem in Minkowski spaces.’, Geom. Dedicata 17 (1985), 227–238.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Chandrasekaran, R., and Tamir, A.: ‘Algebraic optimization: The Fermat-Weber problem’, Math. Programming 46 (1990), 219–224.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Cieslik, D.: Steiner minimal trees, Kluwer Acad. Publ., 1999.Google Scholar
  6. [6]
    Cockayne, E.J., and Melzak, Z.A.: ‘Euclidean constructibility in graph-minimization problems’, Math. Mag. 42 (1969), 206–208.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Courant, R., and Robbins, H.: What is mathematics?, Oxford Univ. Press, 1941.Google Scholar
  8. [8]
    Drezner, Z. (ed.): Facility location: A survey on applications and methods, Ser. in Operations Research. Springer, 1995.Google Scholar
  9. [9]
    Durier, R.: ‘The Fermat-Weber problem and inner product spaces’, J. Approx. Th. 78 (1994), 161–173.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Durier, R., and Michelot, C.: ‘Geometrical properties of the Fermat-Weber problem’, European J. Oper. Res. 20 (1985), 332–343.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Eokhardt, U.: ‘Weber’s problem and Weiszfeld’s algorithm in general spaces’, Math. Programming 18 (1980), 186–196.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Erdös, P., and Vincze, I.: ‘On the approximation of convex, closed plane curves by multifocal ellipses’, J. Appl. Probab. 19A (1982), 89–96.CrossRefGoogle Scholar
  13. [13]
    Fasbender, E.: ‘Über die gleichseitigen Dreiecke, welche um ein gegebenes Dreieck gelegt werden konnen’, J. Reine Angew. Math. 30 (1846), 230–231.zbMATHGoogle Scholar
  14. [14]
    Fermat, P. de: Œvres, Vol. I, H. Tannery (ed.), Paris, 1891, Supplement: Paris 1922.Google Scholar
  15. [15]
    Franksen, O.I., and Gratan-Guinness, I.: ‘The earliest contribution to location theory? Spatio-economic equilibrium with Lamé and Clapeyron (1829)’, Math, and Computers in Simulation 31 (1989), 195–220.zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Gross, C., and Strempel, T.-K.: ‘On generalizations of conies and on a generalization of the Fermat-Torricelli point’, Amer. Math. Monthly 105 (1998), 732–743.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    Korneenko, N.M., and Martini, H.: ‘Hyperplane approximation and related topics’, in J. Pach (ed.): New Trends in Discrete and Computational Geometry, Springer, 1993, pp. 135–162.Google Scholar
  18. [18]
    Kuhn, H.W.: ‘Steiner’s problem revisited’, in G.B. Dantzig and B.C. Eaves (eds.): Studies in Optimization, Vol. 10 of Studies in Math., Math. Assoc. Amer., 1974, pp. 52–70.Google Scholar
  19. [19]
    Kuhn, H.W.: ‘Nonlinear programming: A historical view’, in R.W. Cottle and C.W. Lemke (eds.): SIAM-AMS Proc, Vol. 9, Amer. Math. Soc, 1976, pp. 1–26.Google Scholar
  20. [20]
    Kupitz, Y.S., and Martini, H.: ‘Geometric aspects of the generalized Fermat-Torricelli problem’, in I. BÁSRÁSNY and K. Böröczky (eds.): Intuitive Geometry (Budapest, 1995), Vol. 6, Bolyai Soc. Math. Studies, 1997, pp. 55–127.Google Scholar
  21. [21]
    Launhardt, W.: Kommercielle Tracirung der Verkehrswege, Hannover, 1872.Google Scholar
  22. [22]
    Love, R.F., Morris, J.G., and Wesolowsky, G.O.: Facilities location: models and methods, North-Holland, 1988.Google Scholar
  23. [23]
    Martini, H., and Schöbel, A.: ‘Median hyperplanes in normed spaces — a survey’, Discr. Appl. Math. 89 (1998), 181–195.zbMATHCrossRefGoogle Scholar
  24. [24]
    Martini, H., and Weissbach, B.: ‘Napoleon’s theorem with weights in n-space’, Geom. Dedicata 74 (1999), 213–223.zbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Melzak, Z.A., and Forsyth, J.S.: ‘Polyconics 1: Polyellipses and optimization’, Quart. Appl. Math. 35 (1977), 239–255.zbMATHMathSciNetGoogle Scholar
  26. [26]
    Noda, R., Sakai, T., and Morimoto, M.: ‘Generalized Fer-mat’s problem.’, Canad. Math. Bull. 34 (1991), 96–104.zbMATHMathSciNetGoogle Scholar
  27. [27]
    Ostresh, L.M.: ‘On the convergence of a class of iterative methods for solving the Weber location problem’, Operat. Res. 26 (1978), 597–609.zbMATHMathSciNetGoogle Scholar
  28. [28]
    Rousseeuw, P.J., and Leroy, A.M.: Robust regression and outlier detection, Wiley, 1987.Google Scholar
  29. [29]
    Torricelli, E.: Opere, Vol. 1/2, Faënza, 1919, pp. 90–97.Google Scholar
  30. [30]
    Torricelli, E.: Opere, Vol. III, Faënza, 1919, pp. 426–431.Google Scholar
  31. [31]
    Tschirnhaus, E.W. von: Medicina mentis, Lipsiae, 1695, German ed. by R. Zaunick, Acta Historica Leopoldina, J.A. Barth, Leipzig 1963.Google Scholar
  32. [32]
    Weber, A.: Über den Standort der Industrien, Teil I: Reine Theorie des Standorts, J.C.B. Mohr, Tübingen, 1909, English ed. by C.J. Friedrichs, Univ. Chicago Press, 1929.Google Scholar
  33. [33]
    Weiszfeld, E.: ‘Sur le point pour lequel la somme des distances de n points donnés est minimu’, Tôhoku Math. J. 43 (1937), 355–386.zbMATHGoogle Scholar
  34. [34]
    Wesolowsky, G.O.: ‘The Weber problem — history and perspectives’, J. Location Sci. 1 (1993), 5–23.zbMATHGoogle Scholar

References

  1. [1]
    Campbell, C.M.: Topics in the theory of groups, Vol. I of Notes on Pure Math., Pusan Nat. Univ., 1985.Google Scholar
  2. [2]
    Conway, J.H.: ‘Advanced problem 5327’, Amer. Math. Monthly 72 (1965), 915.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Helling, H., Kim, A.C., and Mennickb, J.: ‘A geometric study of Fibonacci groups’, J. Lie Theory 8 (1998), 1–23.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Hilden, H.M., Lozano, M.T., and Montesinos, J.M.: ‘The arithmeticity of the figure-eight knot orbifolds’, in B. Apanasov, W. Neumann, A. Reid, and L. Siebenmann (eds.): Topology’ 90, de Gruyter, 1992, pp. 169–183.Google Scholar
  5. [5]
    Johnson, D.L.: ‘Extensions of Fibonacci groups’, Bull. London Math. Soc. 7 (1974), 101–104.CrossRefGoogle Scholar
  6. [6]
    Kim, A.C., and Vesnin, A.: ‘The fractional Fibonacci groups and manifolds’, Sib. Math. J. 38 (1997), 655–664.MathSciNetGoogle Scholar
  7. [7]
    Maclachlan, C: ‘Generalizations of Fibonacci numbers, groups and manifolds’: Combinatorial and Geometric Group Theory (1993), Vol. 204 of Lecture Notes, London Math. Soc, 1995, pp. 233–238.Google Scholar
  8. [8]
    Maclachlan, C., and Reid, A.W.: ‘Generalized Fibonacci manifolds’, Transformation Groups 2 (1997), 165–182.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Thomas, R.M.: ‘The Fibonacci groups revisited’, in C.M. Campbell and E.F. Robertson (eds.): Groups II (St. Andrews, 1989), Vol. 160 of Lecture Notes, London Math. Soc, 1991, pp. 445–456.Google Scholar

References

  1. [1]
    Apanasov, B.N.: Conformal geometry of discrete groups and manifolds, de Gruyter, 2000.Google Scholar
  2. [2]
    Cavicchioli, A., and Spaggiari, F.: ‘The classification of 3-manifolds with spines related to Fibonacci groups’: Algebraic Topology, Homotopy and Group Cohomology, Vol. 1509 of Lecture Notes in Mathematics, Springer, 1992, pp. 50–78.Google Scholar
  3. [3]
    Helling, H., Kim, A.C., and Mennicke, J.: ‘A geometric study of Fibonacci groups’, J. Lie Theory 8 (1998), 1–23.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Hilden, H.M., Lozano, M.T., and Montesinos, J.M.: ‘The arithmeticity of the figure-eight knot orbifolds’, in B. Apanasov, W. Neumann, A. Reid, and L. Siebenmann (eds.): Topology’90, de Gruyter, 1992, pp. 169–183.Google Scholar
  5. [5]
    Kim, A.C., and Vesnin, A.: ‘The fractional Fibonacci groups and manifolds’, Sib. Math. J. 38 (1997), 655–664.MathSciNetGoogle Scholar
  6. [6]
    Maclachlan, C: ‘Generalizations of Fibonacci numbers, groups and manifolds’, in A.J. Duncan, N.D. Gilbert, and J. Howie (eds.): Combinatorial and Geometric Group Theory (Edinburgh, 1993), Vol. 204 of Lecture Notes, London Math. Soc, 1995, pp. 233–238.Google Scholar
  7. [7]
    Maclachlan, C., and Reid, A.W.: ‘Generalized Fibonacci manifolds’, Transformation Groups 2 (1997), 165–182.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Rolfson, D.: Knots and links, Publish or Perish, 1976.Google Scholar
  9. [9]
    Vesnin, A.Yu., and Mednykh, A.D.: ‘Hyperbolic volumes of Fibonacci manifolds’, Sib. Math. J. 36,no. 2 (1995), 235–245.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Vesnin, A.Yu., and Mednykh, A.D.: ‘Fibonacci manifolds as two-fold coverings over the three-dimensional sphere and the Meyerhoff-Neumann conjecture’, Sib. Math. J. 37,no. 3 (1996), 461–467.zbMATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Bicknell, M.: ‘A primer for the Fibonacci numbers VII’, Fibonacci Quart. 8 (1970), 407–420.Google Scholar
  2. [2]
    Hoggatt Jr., V.E., and Bicknell, M.: ‘Roots of Fibonacci polynomials’, Fibonacci Quart. 11 (1973), 271–274.zbMATHMathSciNetGoogle Scholar
  3. [3]
    Hoggatt Jr., V.E., and Long, C.T.: ‘Divisibility properties of generalized Fibonacci polynomials’, Fibonacci Quart. 12 (1974), 113–120.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Lucas, E.: ‘Theorie de fonctions numeriques simplement pe-riodiques’, Amer. J. Math. 1 (1878), 184–240; 289–321.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Philippou, A.N.: ‘The negative binomial distribution of order k and some of its properties’, Biom. J. 26 (1984), 789–794.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Philippou, A.N.: ‘Distributions and Fibonacci polynomials of order k, longest runs, and reliability of concecutive-k-out-of-n: F systems’, in A.N. Philippou, G.E. Bergum, and A.F. Horadam (eds.): Fibonacci Numbers and Their Applications, Reidel, 1986, pp. 203–227.Google Scholar
  7. [7]
    Philippou, A.N.: ‘On multiparameter distributions of order k’, Ann. Inst. Statist. Math. 40 (1988), 467–475.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Philippou, A.N., and Antzoulakos, D.L.: ‘Multivariate Fibonacci polynomials of order k and the multiparameter negative binomial distribution of the same order’, in G.E. Bergum, A.N. Philippou, and A.F. Horadam (eds.): Applications of Fibonacci Numbers, Vol. 3, Kluwer Acad. Publ., 1990, pp. 273–279.Google Scholar
  9. [9]
    Philippou, A.N., and Georghiou, C.: ‘Convolutions of Fibonacci-type polynomials of order k and the negative binomial distributions of the same order’, Fibonacci Quart. 27 (1989), 209–216.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Philippou, A.N., Georghiou, C., and Philippou, G.N.: ‘Fibonacci polynomials of order k, multinomial expansions and probability’, Internat. J. Math. Math. Sci. 6 (1983), 545–550.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Philippou, A.N., Georghiou, C., and Philippou, G.N.: ‘Fibonacci-type polynomials of order k with probability applications’, Fibonacci Quart. 23 (1985), 100–105.zbMATHMathSciNetGoogle Scholar
  12. [12]
    Philippou, A.N., and Makri, F.S.: ‘Longest circular runs with an application in reliability via the Fibonacci-type polynomials of order k’, in G.E. Bergum, A.N. Philippou, and A.F. Horadam (eds.): Applications of Fibonacci Numbers, Vol. 3, Kluwer Acad. Publ., 1990, pp. 281–286.Google Scholar
  13. [13]
    Philippou, A.N., and Muwafi, A.A.: ‘Waiting for the kth consecutive success and the Fibonacci sequence of order k’, Fibonacci Quart. 20 (1982), 28–32.zbMATHMathSciNetGoogle Scholar
  14. [14]
    Webb, W.A., and Parberry, E.A.: ‘Divisibility properties of Fibonacci polynomials’, Fibonacci Quart. 7 (1969), 457–463.zbMATHMathSciNetGoogle Scholar

References

  1. [1]
    Derighetti, A.: ‘Quelques observations concernant les ensembles de Ditkin d’un groupe localement compact’, Monatsh. Math. 101 (1986), 95–113.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Eymard, P.: ‘Algèbres A p et convoluteurs de L p(G)’: Sem. Bourbaki 1969/70, Exp. 367, Vol. 180 of Lecture Notes in Math., Springer, 1971, pp. 364–381.Google Scholar
  3. [3]
    Figà-Talamanca, A.: ‘Translation invariant operators in L p’, Duke Math. J. 32 (1965), 495–501.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Hbrz, C.: ‘The theory of p-spaces’, Trans. Amer. Math. Soc. 154 (1971), 69–82.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Herz, C: ‘Harmonic synthesis for subgroups’, Ann. Inst. Fourier (Grenoble) 23,no. 3 (1973), 91–123.zbMATHMathSciNetGoogle Scholar
  6. [6]
    Leptin, H.: ‘Sur l’algèbre de Fourier d’un groupe localement compact’, C.R. Acad. Sci. Paris Sir. A 266 (1968), 1180–1182.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Lohoué, N.: ‘Algèbres A p et convoluteurs de L p(G)’, Thèse, Univ. Paris-Sud (1971).Google Scholar
  8. [8]
    Lohoué, N.: ‘Estimations IP des coefficients de représentations et opérateurs de convolution’, Adv. Math. 38 (1980), 178–221.zbMATHCrossRefGoogle Scholar
  9. [9]
    Mcmullen, J.R.: ‘Extensions of positive-definite functions’, Memoirs Amer. Math. Soc. 117 (1972).Google Scholar
  10. [10]
    Pier, J.-P.: Amenable locally compact groups, Wiley, 1984.Google Scholar

References

  1. [1]
    Doerk, K., and Hawkes, T.: Finite soluble groups, de Gruyter, 1992.Google Scholar
  2. [2]
    Huppert, B.: Endliche Gruppen I, Springer, 1967.Google Scholar
  3. [3]
    Huppert, B., and Blackburn, N.: Finite groups II, Springer, 1982.Google Scholar

References

  1. [1]
    Dade, E.C.: ‘Carter subgroups and Fitting heights of finite solvable groups’, Illinois J. Math. 13 (1969), 449–514.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Doerk, K., and Hawkes, T.: Finite soluble groups, de Gruyter, 1992.Google Scholar
  3. [3]
    Huppert, B.: Endliche Gruppen I, Springer, 1967.Google Scholar
  4. [4]
    Huppert, B., and Blackburn, N.: Finite Groups II, Springer, 1982.Google Scholar
  5. [5]
    Kurzweil, H.: ‘Auflösbare Gruppen auf denen nicht auflösbare Gruppen operieren’, Manuscripta Math. 41 (1983), 233–305.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Thompson, J.G.: ‘Finite groups with fixed-point-free automorphisms of prime order’, Proc. Nat. Acad. Sci. USA 45 (1959), 578–581.zbMATHCrossRefGoogle Scholar
  7. [7]
    Turull, A.: ‘Fitting height of groups and of fixed points’, J. Algebra 86 (1984), 555–566.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Turull, A.: ‘Character theory and length problems’: Finite and Locally Finite Groups (Istanbul, 1994), Kluwer Acad. Publ., 1995, pp. 377–400.Google Scholar
  9. [9]
    Turull, A.: ‘Fixed point free action with some regular orbits’, J. Algebra 194 (1997), 362–377.zbMATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Baer, R.: ‘Abelian groups which are direct summands of every containing group’, Bull. Amer. Math. Soc. 46 (1940), 800–806.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Bass, H.: ‘Finitistic dimension and a homological generalization of semiprimary rings’, Trans. Amer. Math. Soc. 95 (1960), 466–488.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Bass, H.: ‘On the ubiquity of Gorenstein rings’, Math. Z. 82 (1963), 8–28.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Bioan, L., El Bashir, R., and Enochs, E.: ‘All modules have flat covers’, Bull. London Math. Soc. (to appear).Google Scholar
  5. [5]
    Eckmann, B., and Schöpf, A.: ‘Über injektive Moduln’, Archiv Math. 4 (1953), 75–78.zbMATHCrossRefGoogle Scholar
  6. [6]
    Eklof, P., and Trlifaj, J.: ‘How to make Ext vanish’, Bull. London Math. Soc. (to appear).Google Scholar
  7. [7]
    Enochs, E.: ‘Injective and fiat covers, envelopes and resolvents’, Israel J. Math. 39 (1981), 33–38.MathSciNetGoogle Scholar
  8. [8]
    Enochs, E., and Xu, J.: ‘On invariants dual to the Bass numbers’, Proc. Amer. Math. Soc. 125 (1997), 951–960.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Göbel, R., and Shelah, S.: ‘Cotorsion theories and splitters’, Trans. Amer. Math. Soc. (to appear).Google Scholar
  10. [10]
    Quillen, D.: Homotopical algebra, Vol. 43 of Lecture Notes in Mathematics, Springer, 1967.Google Scholar
  11. [11]
    Salce, L.: ‘Cotorsion theories for Abelian groups’: Symp. Math., Vol. 23, Amer. Math. Soc., 1979, pp. 11–32.MathSciNetGoogle Scholar
  12. [12]
    Xu, J.: ‘The existence of flat covers over noetherian rings of finite Krull dimension’, Proc. Amer. Math. Soc. 123 (1995), 27–32.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Xu, J.: Flat cover’s of modules, Vol. 1634 of Lecture Notes in Mathematics, Springer, 1996.Google Scholar

References

  1. [1]
    Bruce, J.W.: ‘Lines, surfaces and duality’, Math. Proc. Cambridge Philos. Soc. 112 (1992), 53–61.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Tsuboko, M.: ‘On the line complex determinant of flecnode tangents of a ruled surface and its flecnodal surfaces’, Memoirs Ryojun Coll. Engin. 11 (1938), 233–238.Google Scholar

References

  1. [1]
    Graham, R.L., Knuth, D.E., and Patashnik, O.: Concrete mathematics: a foundation for computer science, Addison-Wesley, 1990.Google Scholar
  2. [2]
    Wolfram, S.: Mathematica: Version 3, Addison-Wesley, 1996, pp. 718–719.Google Scholar

References

  1. [1]
    Coutinho, S.C.: ‘Generating modules efficiently over non-commutative noetherian rings’, Trans. Amer. Math. Soc. 323 (1991), 843–856.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Eisenbud, D., and Evans, Jr., E.G.: ‘Generating modules efficiently: Theorems from algebraic K-theory’, J. Algebra 27 (1973), 278–305.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Forster, O.: ‘Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring’, Math. Z. 84 (1964), 80–87.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Husemoller, D.: Fibre bundles, second ed., Springer, 1966.Google Scholar
  5. [5]
    Kunz, E.: Introduction to commutative algebra and algebraic geometry, Birkhäuser, 1985.Google Scholar
  6. [6]
    Mcconnbll, J.C., and Robson, J.C.: Noncommutative noetherian rings, Ser. in Pure and Applied Math. Wiley, 1987.Google Scholar
  7. [7]
    Stafford, J.T.: ‘Generating modules efficiently: algebraic K-theory for noncommutative noetherian rings’, J. Algebra 69 (1981), 312–346.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Stafford, J.T.: ‘The Goldie rank of a module’: Noetherian rings and their applications (Oberwolfach, 1983), Vol. 24 of Math. Surveys and Monographs, Amer. Math. Soc, 1987, pp. 1–20.Google Scholar
  9. [9]
    Swan, R.G.: ‘The number of generators of a module’, Math. Z. 102 (1967), 318–322.zbMATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Cowling, M., and Haagerup, U.: ‘Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one.’, Invent. Math. 96 (1989), 507–549.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Delaporte, J., and Derighetti, A.: ‘Best bounds for the approximate units of certain ideals of L 1(G) and of A p(G)’, Proc. Amer. Math. Soc. 124 (1996), 1159–1169.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Eymard, P.: ‘L’algèbre de Fourier d’un groupe localement compact’, Bull. Soc. Math. France 92 (1964), 181–236.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Kaniuth, E., and Lau, A.T.: ‘A separation property of positive definite functions on locally compact groups and applications to Fourier algebras’, J. Fund. Anal. 175 (2000), 89–110.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Pier, J.-P.: Amenable locally compact groups, Wiley, 1984.Google Scholar
  6. [6]
    Stinespring, W.F.: ‘Integration theorems for gages and duality for unimodular groups’, Trans. Amer. Math. Soc. 90 (1959), 15–56.zbMATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Boyd, J.P.: Chebyshev and Fourier spectral methods, second ed., Dover, 2000, pdf version: http://www-personal.engin.umich.edu/~jpboyd/book-spectral2000.html.
  2. [2]
    Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A.: Spectral methods in fluid dynamics, Springer, 1987.Google Scholar
  3. [3]
    Fornberg, B.: A practical guide to pseudospectral methods, Vol. 1 of Cambridge Monographs Appl. Comput. Math., Cambridge Univ. Press, 1996.Google Scholar
  4. [4]
    Gottlieb, D., Hussaini, M.Y., and Orszag, S.A.: ‘Theory and application of spectral methods’, in R.G. Voigt, D. Gottlieb, and M.Y. Hussaini (eds.): Spectral Methods for Partial Differential Equations, SIAM, 1984.Google Scholar
  5. [5]
    Gottlieb, D., and Orszag, S.A.: Numerical analysis of spectral methods: Theory and applications, SIAM, 1977.Google Scholar

References

  1. [1]
    Cowling, M.: ‘The Fourier-Stieltjes algebra of a semisimple Lie group’, Colloq. Math. 41 (1979), 89–94.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Cowling, M., and Fendler, G.: ‘On representations in Banach spaces’, Math. Ann. 266 (1984), 307–315.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Derighetti, A.: ‘Some results on the Fourier-Stieltjes algebra of a locally compact group’, Comment. Math. Helv. 45 (1970), 219–228.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Eymard, P.: ‘L’algebre de Fourier d’un groupe localement compact’, Bull. Soc. Math. France 92 (1964), 181–236.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Fendler, G.: ‘An L p-version of a theorem of D.A. Raikov’, Ann. Inst. Fourier (Grenoble) 35,no. 1 (1985), 125–135.zbMATHMathSciNetGoogle Scholar
  6. [6]
    Granirer, E.E., and Leinert, M.: ‘On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra B(G) and of the measure algebra M(G)’, Rocky Mount. J. Math. 11 (1981), 459–472.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Herz, C: ‘Une généralisation de la notion de transformee de Fourier-Stieltjes’, Ann. Inst. Fourier (Grenoble) 24,no. 3 (1974), 145–157.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Host, B.: ‘Le théorème des idempotents dans B(G)’, Bull. Soc. Math. France 114 (1986), 215–223.zbMATHMathSciNetGoogle Scholar
  9. [9]
    Lefranc, M.: ‘Sur certaines algèbres sur un groupe’, C.R. Acad. Sci. Paris Sér. A 274 (1972), 1882–1883.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Lefranc, M.: ‘Sur certaines algèbres sur un groupe’, These de Doctorat d’Etat, Univ. Sci. et Techn. du Languedoc (1972).Google Scholar
  11. [11]
    Losert, V.: ‘Properties of the Fourier algebra that are equivalent to amenability’, Proc. Amer. Math. Soc. 92 (1984), 347–354.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Mckennon, K.: ‘Multipliers, positive functionals, positive-definite functions, and Fourier-Stieltjes transforms’, Memoirs Amer. Math. Soc. 111 (1971).Google Scholar
  13. [13]
    Pier, J.-P.: Amenable locally compact groups, Wiley, 1984.Google Scholar
  14. [14]
    Walter, M.E.: ‘W*-algebras and nonabelian harmonic analysis’, J. Fund. Anal. 11 (1972), 17–38.zbMATHCrossRefGoogle Scholar

References

  1. [1]
    Crowell, R.H., and Fox, R.H.: An introduction to knot theory, Ginn, 1963.Google Scholar
  2. [2]
    Przytycki, J.: ‘3-coloring and other elementary invariants of knots’: Knot Theory, Vol. 42 of Banach Center Publications, 1998, pp. 275–295.Google Scholar

References

  1. [1]
    Hausdorff, F.: ‘Zur Theorie der linearen metrischen Räume’, J. Heine Angew. Math. 167 (1932), 265.Google Scholar
  2. [2]
    Kozlov, V.A., Maz’ya, V.G., and Rossmann, J.: Elliptic boundary value problems in domains with point singularities, Amer. Math. Soc., 1997.Google Scholar
  3. [3]
    Orlovskij, D.G.: ‘The Fredholm solvability of inverse problems for abstract differential equations’, in A.N. Tikhonov et al. (eds.): Ill-Posed Problems in the Natural Sciences, VSP, 1992.Google Scholar
  4. [4]
    Prilepko, A.T., Orlovsky, D.G., and Vasin, I.A.: Methods for solving inverse problems in mathematical physics, M. Dekker, 2000.Google Scholar

References

  1. [1]
    Freudenthal, H.: ‘Beziehungen der E 7 und E 8 zur Ok-tavenebene I–II’, Indag. Math. 16 (1954), 218–230; 363–386.MathSciNetGoogle Scholar
  2. [2]
    Kamiya, N.: ‘The construction of all simple Lie algebras over C from balanced Freudenthal-Kantor triple systems’: Contributions to General Algebra, Vol. 7, Hölder-Pichler-Tempsky, Wien, 1991, pp. 205–213.Google Scholar
  3. [3]
    Kamiya, N.: ‘On Freudenthal-Kantor triple systems and generalized structurable algebras’: Non-Associative Algebra and Its Applications, Kluwer Acad. Publ., 1994, pp. 198–203.Google Scholar
  4. [4]
    Kamiya, N., and Okubo, S.: ‘On δ-Lie supertriple systems associated with (ɛ, δ)-Freudenthal-Kantor supertriple systems’, Proc. Edinburgh Math. Soc. 43 (2000), 243–260.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Kantor, I.L.: ‘Models of exceptional Lie algebras’, Soviet Math. Dokl. 14 (1973), 254–258.zbMATHMathSciNetGoogle Scholar
  6. [6]
    Okubo, S.: Introduction to octonion and other non-associative algebras in physics, Cambridge Univ. Press, 1995.Google Scholar
  7. [7]
    Yamaguti, K.: ‘On the metasymplectic geometry and triple systems’, Surikaisekikenkyusho Kokyuroku, Res. Inst. Math. Sci. Kyoto Univ. 306 (1977), 55–92. (In Japanese.)Google Scholar

References

  1. [1]
    Asgharian, M., and Zlobec, S.: ‘Abstract parametric programming’, Preprint McGill Univ. March (2000).Google Scholar
  2. [2]
    Barbu, V., and Precupanu, Th.: Convexity and optimization in Banach spaces, Sijthoff & Noordhoff, 1978.Google Scholar
  3. [3]
    Bazaraa, M.S., Sherali, H.D., and Shetty, C.M.: Nonlinear programming: Theory and algorithms, second ed., Wiley, 1993.Google Scholar
  4. [4]
    Ben-Israel, A., Ben-Tal, A., and Zlobec, S.: Optimality in nonlinear programming: A feasible directions approach, Wiley /Interscience, 1981.Google Scholar
  5. [5]
    Bryson, Jr., E., and Ho, Yu-Chi: Applied optimal control, Blaisdell, 1969.Google Scholar
  6. [6]
    Canon, M., Cullum, C., and Polak, E.: Theory of optimal control and mathematical programming, McGraw-Hill, 1970.Google Scholar
  7. [7]
    Girsanov, I.V.: Lectures on mathematical theory of extremum problems, Vol. 67 of Lecture Notes in economics and math, systems, Springer, 1972.Google Scholar
  8. [8]
    Guddat, J., and Jongen, H.Th.: ‘On global optimization based on parametric optimization’, in J. Guddat et al. (eds.): Advances in Mathematical Optimization, Akad. Berlin, 1988, pp. 63–79.Google Scholar
  9. [9]
    Halkin, H.: ‘Maximum principle of the Pontryagin type for systems described by nonlinear difference equations’, SIAM J. Control 4 (1966), 90–111.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    John, F.: ‘Extremum problems with inequalities as subsidiary conditions’, in K.O. Friedrichs et al. (eds.): Studies and Essays, Courant Anniversary Volume, Wiley/Interscience, 1948, Reprinted in: J. Moser (ed.): Fritz John Collected Papers 2, Birkhäuser, 1985, pp. 543–560.Google Scholar
  11. [11]
    Lignola, M.B., and Morgan, J.: ‘Existence of solutions to generalized bilevel programming problem’, in A. Migdalas et al. (eds.): Multilevel Optimization: Algorithms and Applications, Kluwer Acad. Publ., 1998, pp. 315–332.Google Scholar
  12. [12]
    Liu, W.B., and Floudas, C.A.: ‘A remark on the GOP algorithm for global optimization’, J. Global Optim. 3 (1993), 519–521.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Luenberger, D.G.: Optimization by vector space methods, Wiley, 1969.Google Scholar
  14. [14]
    Mangasarian, O.L.: Nonlinear programming, McGraw-Hill, 1969.Google Scholar
  15. [15]
    Mangasarian, O.L., and Fromovitz, S.: ‘The Fritz John optimality conditions in the presence of equality and inequality constraints’, J. Math. Anal. Appl. 17 (1967), 37–47.zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Massam, H., and Zlobec, S.: ‘Various definitions of the derivative in mathematical programming’, Math. Programming 7 (1974), 144–161, Addendum: ibid 14 (1978), 108–111.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    Pontryagin, L.S., Boltyanski, V.G., Gamkrelidze, R.V., and Mishchenko, E.F.: The mathematical theory of optimal processes, Wiley, 1962.Google Scholar
  18. [18]
    Rooyen, M. van, Sears, M., and Zlobec, S.: ‘Constraint qualifications in input optimization’, J. Austral. Math. Soc. Ser. B 30 (1989), 326–342.zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    Sethi, S.P.: A survey of management science applications of the deterministic maximum principle, Vol. 9 of TIMS Studies in the Management Sci., North-Holland, 1978, pp. 33–67.MathSciNetGoogle Scholar
  20. [20]
    Smith, D.R.: Variational methods in optimization, Prentice-Hall, 1974.Google Scholar
  21. [21]
    Tapiero, C.S.: Time, dynamics and the process of management modeling, Vol. 9 of TIMS Studies in the Management Sci., North-Holland, 1978, pp. 7–31.MathSciNetGoogle Scholar
  22. [22]
    Zlobec, S.: ‘Partly convex programming and Zermelo’s navigation problems’, J. Global Optim. 7 (1995), 229–259.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    Zlobec, S.: ‘Stable parametric programming’, Optimization 45 (1999), 387–416, (Augmented version forthcoming as research monograph, Kluwer Acad. Publ., Applied Optim. Series.).zbMATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    Zlobec, S., and Craven, B.D.: ‘Stabilization and determination of the set of minimal binding constraints in convex programming’, Math. Operationsforschung und Statistik, Ser. Optim. 12 (1981), 203–220.zbMATHMathSciNetGoogle Scholar

References

  1. [1]
    Noble, B., and Daniels, J.W.: Applied linear algebra, second ed., Prentice-Hall, 1969, p. 328ff.Google Scholar

References

  1. [1]
    Behrends, E.: M-structure and the Banach-Stone theorem, Springer, 1979.Google Scholar
  2. [2]
    Jarosz, K.: Perturbations of Banach spaces, Springer, 1985.Google Scholar

References

  1. [1]
    Bellman, R.E., and Zadeh, L.A.: ‘Decision-making in a fuzzy environment’, Management Sci. 17B (1970), 141–164.MathSciNetGoogle Scholar
  2. [2]
    Dubois, D.: ‘linear programming with fuzzy data’, in j.c. bezdek (ed.): analysis of fuzzy information, vol. 3: applications in engineering and sci., crc, 1987, pp. 241–263.Google Scholar
  3. [3]
    Inuiguchi, M., and Ramik, J.: ‘Fuzzy linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem’, Fuzzy Sets and Syst. 111 (2000), 3–28.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Negoita, C.V., Minoiu, S., and Stan, E.: ‘On considering imprecision in dynamic linear programming’, ECECSR J. 3 (1976), 83–95.MathSciNetGoogle Scholar
  5. [5]
    Sakawa, M.: Fuzzy sets and interactive multiobjective optimization, Plenum, 1993.Google Scholar
  6. [6]
    Slowinski, R., and Teghem, J.: Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Acad. Publ., 1990.Google Scholar
  7. [7]
    Tanaka, H., Okuda, T., and Asai, K.: ‘On fuzzy mathematical programming’, J. Cybernet. 3 (1974), 37–46.MathSciNetGoogle Scholar
  8. [8]
    Zimmermann, H.-J.: ‘Description and optimization of fuzzy systems’, Int. J. General Syst. 2 (1976), 209–215.CrossRefGoogle Scholar

References

  1. [1]
    Adamek, J., Herrlich, H., and Strecker, G.E.: Abstract and concrete categories, Wiley, 1990.Google Scholar
  2. [2]
    Höhle, U., and Šostak, A.: ‘Axiomatic foundations of fixed-basis fuzzy topology’, in U. Höhle and S.E. Rodabaugh (eds.): Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Vol. 3 of The Handbooks of Fuzzy Sets, Kluwer Acad. PubL, 1999, pp. 123–272.Google Scholar
  3. [3]
    Höhle, U., and Rodabaugh, S.E. (eds.): Mathematics of fuzzy sets: Logic, topology, and measure theory, Vol. 3 of The Handbooks of Fuzzy Sets, Kluwer Acad. Publ., 1999.Google Scholar
  4. [4]
    Höhle, U., Rodabaugh, S.E., and Šostak, A. (eds.): ‘Special issue on fuzzy topology’, Fuzzy Sets and Syst. 73,no. 1 (1995).Google Scholar
  5. [5]
    Höhle, U. (ed.): ‘Mathematical aspects of fuzzy set theory’, Fuzzy Sets and Syst. 40,no. 2 (1991), Special Memorial Volume-Second Issue.Google Scholar
  6. [6]
    Johnstone, P.T.: Stone spaces, Cambridge Univ. Press, 1982.Google Scholar
  7. [7]
    Kotzé, W. (ed.): ‘Special issue’, Quaestiones Math. 20,no. 3 (1997).Google Scholar
  8. [8]
    Rodabaugh, S.E.: ‘Categorical foundations of variable-basis fuzzy topology’, in U. Höhle and S.E. Rodabaugh (eds.): Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Vol. 3 of The Handbooks of Fuzzy Sets, Kluwer Acad. Publ., 1999, pp. 273–388.Google Scholar
  9. [9]
    Rodabaugh, S.E., Klement, E.P., and Höhle, U. (eds.): Applications of category theory to fuzzy subsets, Kluwer Acad. PubL, 1992.Google Scholar
  10. [10]
    Wang, G.-J.: Theory of L-fuzzy topological spaces, Shanxi Normal Univ. Publ. House, 1988. (In Chinese.)Google Scholar
  11. [11]
    Ying-Ming, Liu,and Mao-Kang, Luo: Fuzzy topology, World Sci., 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Personalised recommendations