Advertisement

pp 1-5 | Cite as

Cobalamin D Deficiency Identified Through Newborn Screening

  • Aya Abu-El-Haija
  • Bryce A. Mendelsohn
  • Jacque L. Duncan
  • Anthony T. Moore
  • Orit A. Glenn
  • Kara Weisiger
  • Renata C. Gallagher
Research Report
Part of the JIMD Reports book series

Abstract

Cobalamin D deficiency (cblD) is one of the least common cobalamin metabolism disorders. It may result in isolated homocystinuria, isolated methylmalonic aciduria, or combined methylmalonic aciduria and homocystinuria (cblD-combined). Only seven cases of the combined cblD form have been reported to date. Due to the rarity of this disorder, the presentation and symptoms are not well described. We present an eighth case of the cblD-combined subtype, who had a positive newborn screen (NBS) on day of life 3. She was symptomatic and developed lethargy and poor oral intake at 8 days of life. She was treated with 10% dextrose, folinic acid, intramuscular hydroxocobalamin, and betaine. Despite the early initiation of treatment, she developed complications of the disease and was found to have abnormal brain imaging findings at 17 days of age and macular atrophy at 3 months of age and has global developmental delay. We provide detailed description of her presentation, her treatment, and her complications to aid in the understanding of this rare disorder, which is very similar to the more common cobalamin C disorder (cblC).

Keywords

cblD combined Cobalamin D Homocystinuria Methylmalonic aciduria 

References

  1. Aleman TS, Brodie F, Garvin C, Gewaily DY, Ficicioglu CH, Mills MD et al (2015) Retinal structure in cobalamin C disease: mechanistic and therapeutic implications. Ophthalmic Genet 36(4):339–348.  https://doi.org/10.3109/13816810.2014.885059CrossRefGoogle Scholar
  2. Atkinson C, Miousse IR, Watkins D, Rosenblatt DS, Raiman JAJ (2014) Clinical, biochemical, and molecular presentation in a patient with the cblD-homocystinuria inborn error of cobalamin metabolism. JIMD Rep 17:77–81.  https://doi.org/10.1007/8904_2014_340CrossRefGoogle Scholar
  3. Bacci GM, Donati MA, Pasquini E, Munier F, Cavicchi C, Morrone A et al (2017) Optical coherence tomography morphology and evolution in cblC disease-related maculopathy in a case series of very young patients. Acta Ophthalmol 95(8):e776–e782.  https://doi.org/10.1111/aos.13441CrossRefGoogle Scholar
  4. Bonafede L, Ficicioglu CH, Serrano L, Han G, Morgan JIW, Mills MD et al (2015) Cobalamin C deficiency shows a rapidly progressing maculopathy with severe photoreceptor and ganglion cell loss. Invest Ophthalmol Vis Sci 56(13):7875–7887.  https://doi.org/10.1167/iovs.15-17857CrossRefGoogle Scholar
  5. Brooks BP, Thompson AH, Sloan J, Manoli I, Carrillo-Carrasco N, Zein WM, Venditti CP (2016) Ophthalmic manifestations and long-term visual outcomes in patients with cobalamin C deficiency. Ophthalmology 123(3):571.  https://doi.org/10.1016/j.ophtha.2015.10.041CrossRefGoogle Scholar
  6. Coelho D, Suormala T, Stucki M, Lerner-Ellis JP, Rosenblatt DS, Newbold RF et al (2008) Gene identification for the cblD defect of vitamin B12 metabolism. N Engl J Med 358(14):1454–1464.  https://doi.org/10.1056/NEJMoa072200CrossRefGoogle Scholar
  7. Goodman SI, Moe PG, Hammond KB, Mudd SH, Uhlendorf BW (1970) Homocystinuria with methylmalonic aciduria: two cases in a sibship. Biochem Med 4(5):500–515Google Scholar
  8. Huemer M, Diodato D, Schwahn B, Schiff M, Bandeira A, Benoist J-F et al (2017) Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J Inherit Metab Dis 40(1):21–48.  https://doi.org/10.1007/s10545-016-9991-4CrossRefGoogle Scholar
  9. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130(1):1–12.  https://doi.org/10.1007/s10633-014-9473-7CrossRefGoogle Scholar
  10. Miousse IR, Watkins D, Coelho D, Rupar T, Crombez EA, Vilain E et al (2009) Clinical and molecular heterogeneity in patients with the cblD inborn error of cobalamin metabolism. J Pediatr 154(4):551–556.  https://doi.org/10.1016/j.jpeds.2008.10.043CrossRefGoogle Scholar
  11. Parini R, Furlan F, Brambilla A, Codazzi D, Vedovati S, Corbetta C et al (2013) Severe neonatal metabolic decompensation in methylmalonic acidemia caused by CblD defect. JIMD Rep 11:133–137.  https://doi.org/10.1007/8904_2013_232CrossRefGoogle Scholar
  12. Soylu Ustkoyuncu P, Kendirci M, Kardas F, Gokay S, Per H, Kacar Bayram A (2018) Neutropenia and increased mean corpuscular volume (MCV) with abnormal neurological findings: a case of cobalamin D deficiency. J Pediatr Hematol Oncol.  https://doi.org/10.1097/MPH.0000000000001120
  13. Stucki M, Coelho D, Suormala T, Burda P, Fowler B, Baumgartner MR (2012) Molecular mechanisms leading to three different phenotypes in the cblD defect of intracellular cobalamin metabolism. Hum Mol Genet 21(6):1410–1418.  https://doi.org/10.1093/hmg/ddr579CrossRefGoogle Scholar
  14. Suormala T, Baumgartner MR, Coelho D, Zavadakova P, Kozich V, Koch HG et al (2004) The cblD defect causes either isolated or combined deficiency of methylcobalamin and adenosylcobalamin synthesis. J Biol Chem 279(41):42742–42749.  https://doi.org/10.1074/jbc.M407733200CrossRefGoogle Scholar
  15. Traboulsi EI, Silva JC, Geraghty MT, Maumenee IH, Valle D, Green WR (1992) Ocular histopathologic characteristics of cobalamin C type vitamin B12 defect with methylmalonic aciduria and homocystinuria. Am J Ophthalmol 113(3):269–280Google Scholar
  16. Watkins D, Rosenblatt DS (2011) Inborn errors of cobalamin absorption and metabolism. Am J Med Genet C Semin Med Genet 157C(1):33–44.  https://doi.org/10.1002/ajmg.c.30288CrossRefGoogle Scholar
  17. Weisfeld-Adams JD, McCourt EA, Diaz GA, Oliver SC (2015) Ocular disease in the cobalamin C defect: a review of the literature and a suggested framework for clinical surveillance. Mol Genet Metab 114(4):537–546.  https://doi.org/10.1016/j.ymgme.2015.01.012CrossRefGoogle Scholar

Copyright information

© Society for the Study of Inborn Errors of Metabolism (SSIEM) 2018

Authors and Affiliations

  • Aya Abu-El-Haija
    • 1
  • Bryce A. Mendelsohn
    • 1
  • Jacque L. Duncan
    • 2
  • Anthony T. Moore
    • 2
  • Orit A. Glenn
    • 3
  • Kara Weisiger
    • 1
  • Renata C. Gallagher
    • 1
  1. 1.Division of Medical Genetics, Department of PediatricsUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of OphthalmologyUniversity of California, San FranciscoSan FranciscoUSA
  3. 3.Department of RadiologyUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations