Advertisement

IgG N-Glycosylation Galactose Incorporation Ratios for the Monitoring of Classical Galactosaemia

  • Henning Stockmann
  • Karen P. Coss
  • M. Estela Rubio-Gozalbo
  • Ina Knerr
  • Maria Fitzgibbon
  • Ashwini Maratha
  • James Wilson
  • Pauline Rudd
  • Eileen P. Treacy
Research Report
Part of the JIMD Reports book series (JIMD, volume 27)

Abstract

Classical galactosaemia (OMIM #230400) is a rare disorder of carbohydrate metabolism caused by deficiency of the galactose-1-phosphate uridyltransferase enzyme (EC 2.7.7.12). The cause of the long-term complications, including neurological, cognitive and fertility problems in females, remains poorly understood. The relatively small number of patients with galactosaemia and the lack of validated biomarkers pose a substantial challenge for determining prognosis and monitoring disease progression and responses to new therapies. We report an improved method of automated robotic hydrophilic interaction ultra-performance liquid chromatography N-glycan analysis for the measurement of IgG N-glycan galactose incorporation ratios applied to the monitoring of adult patients with classical galactosaemia. We analysed 40 affected adult patients and 81 matched healthy controls. Significant differences were noted between the G0/G1 and G0/G2 incorporation ratios between galactosaemia patients and controls (p < 0.001 and <0.01, respectively). Our data indicate that the use of IgG N-glycosylation galactose incorporation analysis may be now applicable for monitoring patient dietary compliance, determining prognosis and the evaluation of potential new therapies.

Keywords

Assembly Defect Classical Galactosaemia Galactose Intake Dietary Galactose Galactosaemia Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

G0

Agalactosylated

G1

Monogalactosylated

G2

Digalactosylated

Gal-1-P

Galactose-1-phosphate

GALT

Galactose-1-phosphate uridyltransferase

HILIC-UPLC

Hydrophilic interaction ultra-performance liquid chromatography

Notes

Acknowledgements

Funding for these studies was granted by the Irish Medical Research Charities Group (CFFH/TSCUH)/Health Research Board (No 2) was supported by the EU FP7 Research Framework Program ‘HighGlycan’ (Grant Reference No. 278535).

References

  1. Bosch AM, Bakker HD, Wenniger-Prick LJ, Wanders RJ, Wijburg FA (2004) High tolerance for oral galactose in classical galactosaemia: dietary implications. Arch Dis Child 89:1034–1036CrossRefPubMedPubMedCentralGoogle Scholar
  2. Charlwood J, Clayton P, Keir G, Mian N, Winchester B (1998) Defective galactosylation of serum transferrin in galactosemia. Glycobiology 8:351–357CrossRefPubMedGoogle Scholar
  3. Coman DJ, Murray DW, Byrne JC, Rudd PM, Bagaglia PM, Doran PD, Treacy EP (2010) Galactosemia, a single gene disorder with epigenetic consequences. Pediatric Res 67:286–292CrossRefGoogle Scholar
  4. Coss K, Byrne J, Coman D, Adamczyk B et al (2012) IgG N-glycans as potential biomarkers for determining galactose tolerance in Classical Galactosaemia. Mol Genet Metab 105:212–220Google Scholar
  5. Coss KP, Hawkes CP, Adamczyk B et al (2013) N-glycan abnormalities in children with galactosemia. J Proteome Res 13:385–394CrossRefPubMedGoogle Scholar
  6. Coss K, Treacy E, Cotter E, Knerr I, Murray D, Shin Y, Doran P (2014) Systemic gene dysregulation in classical Galactosaemia: is there a central mechanism? Mol Genet Metab 113:177–187CrossRefPubMedGoogle Scholar
  7. Dani N, Broadie K (2012) Glycosylated synaptomatrix regulation of trans‐synaptic signalling. Dev Neurobiol 72(1):2–21CrossRefPubMedPubMedCentralGoogle Scholar
  8. Freeze HH (2013) Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 288:6936–6945CrossRefPubMedPubMedCentralGoogle Scholar
  9. Frey PA (1996) The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 10:461–470PubMedGoogle Scholar
  10. Fridovich-Keil JL, Walter JH (2008) Galactosaemia Chapter 72. The online metabolic and molecular bases of inherited disease, OMMBID. McGraw Hill, New YorkGoogle Scholar
  11. Hughes J, Ryan S, Lambert D et al (2009) Outcomes of siblings with classical galactosemia. J Pediatr 154:721–726CrossRefPubMedGoogle Scholar
  12. Hutchesson AC, Murdoch-Davis C, Green A, Preece MA, Allen J, Holton JB, Rylance G (1999) Biochemical monitoring of treatment for galactosaemia: biological variability in metabolite concentrations. J Inherit Metab Dis 22:139–148CrossRefPubMedGoogle Scholar
  13. Jumbo-Lucioni P, Garber K, Kiel J et al (2012) Diversity of approaches to classic galactosaemia around the world: a comparison of diagnosis, intervention and outcomes. J Inherit Metab Dis 35(6):1037–1049CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jumbo-Lucioni P, Parkinson W, Broadie K (2014) Altered synaptic architecture and glycosylated synaptomatrix composition in a Drosophila classic galactosemia disease model. Dis Model Mech 7(12):1365–1378CrossRefPubMedPubMedCentralGoogle Scholar
  15. Knerr I, Coss KP, Kratzsch J et al (2015) Effects of temporary low-dose galactose supplements in children aged 5–12 years with Classical Galactosaemia: a pilot study. Pediatr Res. doi: 10.1038/pr.2015.107 PubMedGoogle Scholar
  16. Krabbi K, Uudelepp ML, Joost K, Zordania R, Ounap K (2011) Long-term complications in Estonian galactosemia patients with a less strict lactose-free diet and metabolic control. Mol Genet Metab 103(3):249–253CrossRefPubMedGoogle Scholar
  17. Lai K, Langley SD, Khwaja FW, Schmitt EW, Elsas LJ (2003) GALT deficiency causes UDP-hexose deficit in human galactosemic cells. Glycobiology 13:285–294CrossRefPubMedGoogle Scholar
  18. Liu Y, Xia B, Gleason TJ, Castañeda U, He M, Berry GT, Fridovich-Keil JL (2012) N-and O-linked glycosylation of total plasma glycoproteins in galactosemia. Mol Genet Metab 106:442–454CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ng WG, Xu YK, Kaufman FR, Donnell GN (1989) Deficit of uridine diphosphate galactose in galactosaemia. J Inherit Metab Dis 12:257–266CrossRefPubMedGoogle Scholar
  20. Ornstein KS, McGuire EJ, Berry GT, Roth S, Segal S (1992) Abnormal galactosylation of complex carbohydrates in cultured fibroblasts from patients with galactose-1-phosphate uridyltransferase deficiency. Pediatr Res 31:508–511CrossRefPubMedGoogle Scholar
  21. Petry K, Greinix HT, Nudelman E, Eisen H, Hakomori S, Levy HL, Reichardt JK (1991) Characterization of a novel biochemical abnormality in galactosemia: deficiency of glycolipids containing galactose or N-acetylgalactosamine and accumulation of precursors in brain and lymphocytes. Biochem Med Metab Biol 46:93Google Scholar
  22. Pučić M, Knežević A, Vidič J et al (2011) High throughput isolation and glycosylation analysis of IgG–variability and heritability of the IgG glycome in three isolated human populations. Mol Cell. Proteomics 10:M111.010090Google Scholar
  23. Quintana E, Navarro-Sastre A, Hernández-Pérez JM et al (2009) Screening for congenital disorders of glycosylation (CDG): transferrin HPLC versus isoelectric focusing (IEF). Clin Biochem 42:408–415CrossRefPubMedGoogle Scholar
  24. Royle L, Campbell MP, Radcliffe CM, White DM et al (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376:1–12CrossRefPubMedGoogle Scholar
  25. Slepak TI, Tang M, Slepak VZ, Lai K (2007) Involvement of endoplasmic reticulum stress in a novel Classic Galactosemia model. Mol Genet Metab 92:78–87CrossRefPubMedPubMedCentralGoogle Scholar
  26. Stöckmann H, Adamczyk B, Hayes J, Rudd PM (2013) Automated, high- throughput IgG-antibody glycoprofiling platform. Anal Chem 85:8841–8849CrossRefPubMedGoogle Scholar
  27. Sturiale L, Barone R, Fiumara A et al (2005) Hypoglycosylation with increased fucosylation and branching of serum transferrin N-glycans in untreated galactosemia. Glycobiology 15:1268–1276Google Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Henning Stockmann
    • 1
  • Karen P. Coss
    • 2
  • M. Estela Rubio-Gozalbo
    • 3
  • Ina Knerr
    • 4
  • Maria Fitzgibbon
    • 5
  • Ashwini Maratha
    • 6
  • James Wilson
    • 7
  • Pauline Rudd
    • 1
  • Eileen P. Treacy
    • 5
    • 6
    • 8
  1. 1.National Institute for Bioprocessing Research and Training (NIBRT), Glycoscience Group, Mount Merrion, BlackrockDublin University CollegeDublinIreland
  2. 2.Department of Infectious Diseases, King’s College London, Faculty of Life Sciences and MedicineGuy’s HospitalLondonUK
  3. 3.Maastricht University Medical CentreMaastrichtThe Netherlands
  4. 4.National Centre for Inherited Metabolic DisordersChildrens University HospitalDublinIreland
  5. 5.Mater Misericordiae University HospitalDublinIreland
  6. 6.University College Dublin Clinical Research CentreDublinIreland
  7. 7.Centre for Population Health Sciences, Medical SchoolEdinburghScotland
  8. 8.Trinity CollegeDublinIreland

Personalised recommendations