Advertisement

Mitochondrial DNA Depletion and Deletions in Paediatric Patients with Neuromuscular Diseases: Novel Phenotypes

  • Tuomas Komulainen
  • Milla-Riikka Hautakangas
  • Reetta Hinttala
  • Salla Pakanen
  • Vesa Vähäsarja
  • Petri Lehenkari
  • Päivi Olsen
  • Päivi Vieira
  • Outi Saarenpää-Heikkilä
  • Johanna Palmio
  • Hannu Tuominen
  • Pietari Kinnunen
  • Kari Majamaa
  • Heikki Rantala
  • Johanna Uusimaa
Research Report
Part of the JIMD Reports book series (JIMD, volume 23)

Abstract

Objective: To study the clinical manifestations and occurrence of mtDNA depletion and deletions in paediatric patients with neuromuscular diseases and to identify novel clinical phenotypes associated with mtDNA depletion or deletions.

Methods: Muscle DNA samples from patients presenting with undefined encephalomyopathies or myopathies were analysed for mtDNA content by quantitative real-time PCR and for deletions by long-range PCR. Direct sequencing of mtDNA maintenance genes and whole-exome sequencing were used to study the genetic aetiologies of the diseases. Clinical and laboratory findings were collected.

Results: Muscle samples were obtained from 104 paediatric patients with neuromuscular diseases. mtDNA depletion was found in three patients with severe early-onset encephalomyopathy or myopathy. Two of these patients presented with novel types of mitochondrial DNA depletion syndromes associated with increased serum creatine kinase (CK) and multiorgan disease without mutations in any of the known mtDNA maintenance genes; one patient had pathologic endoplasmic reticulum (ER) membranes in muscle. The third patient with mtDNA depletion was diagnosed with merosine-deficient muscular dystrophy caused by a homozygous mutation in the LAMA2 gene. Two patients with an early-onset Kearns-Sayre/Pearson-like phenotype harboured a large-scale mtDNA deletion, minor multiple deletions and high mtDNA content.

Conclusions: Novel encephalomyopathic mtDNA depletion syndrome with structural alterations in muscle ER was identified. mtDNA depletion may also refer to secondary mitochondrial changes related to muscular dystrophy. We suggest that a large-scale mtDNA deletion, minor multiple deletions and high mtDNA content associated with Kearns-Sayre/Pearson syndromes may be secondary changes caused by mutations in an unknown nuclear gene.

Keywords

Pigmentary Retinopathy Pearson Syndrome LAMA2 Gene Genome Quebec Innovation Increase Serum Creatine Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CK

Creatine kinase

ER

Endoplasmic reticulum

mtDNA

Mitochondrial DNA

MDDS

Mitochondrial DNA depletion syndrome

nDNA

Nuclear DNA

PCIAA

Phenol-chloroform-isoamyl alcohol extraction

qRT-PCR

Real-time quantitative PCR

XL-PCR

Long-range PCR

Notes

Acknowledgements

The authors thank Ms. Anja Heikkinen and Ms. Pirjo Keränen for their expert assistance. The work was supported by grants from the Research Council for Health of the Academy of Finland (JU, Decision number 138566; KM, Decision number 127764; RH, Decision number 266498 and 273790), the Sigrid Juselius Foundation, the Finnish Medical Foundation, the Arvo ja Lea Ylppö Foundation, the Foundation for Pediatric Research, the Alma and K.A. Snellman Foundation, the Emil Aaltonen Foundation, National Graduate School of Clinical Investigation (CLIGS), a Marie Curie International Outgoing Fellowship of the European Union’s Seventh Framework Programme under the grant agreement number 273669 (BioMit), Special State Grants for Health Research in the Department of Pediatrics and Adolescence and the Department of Neurology at Oulu University Hospital, Oulu, Finland.

Supplementary material

339487_1_En_438_MOESM1_ESM.zip (179 kb)
Supplemental Fig. 1. Muscle mitochondrial DNA content of paediatric patients with encephalomyopathic disorder (N = 77). Patients 1–2 and 4–5 are marked in the graph. The patients with identified genetic aetiology are marked in the graph with black and marked alphabetically according to the patient ID number in the Supplemental Table 1 as follows: a = 3; b = 20; c = 24 (patient P3 in Table 1); d = 33; e = 37; f = 41; g = 44; h = 45; i = 49; j = 60; k = 61; l = 62; m = 85; n = 101
339487_1_En_438_MOESM2_ESM.zip (139 kb)
Supplemental Fig. 2. Muscle mitochondrial DNA content of paediatric patients with myopathic disorder (N = 18). The patients with identified genetic aetiology are marked in the graph with black and marked alphabetically according to the patient ID number in the Supplemental Table 1 as follows: a = 53; b = 67; c = 80; d = 96; e = 99
339487_1_En_438_MOESM3_ESM.zip (116 kb)
Supplemental Fig. 3. Muscle mitochondrial DNA content of paediatric patients with hepatoencephalopathic disorder (N = 9). Patients with reversible hepatoencephalopathy are marked with a cross. The patients with identified genetic aetiology are marked in the graph with black and marked alphabetically according to the patient ID number in the Supplemental Table 1 as follows: a = 1; b = 30
339487_1_En_438_MOESM4_ESM.zip (129 kb)
Supplemental Fig. 4. Muscle mitochondrial DNA content of paediatric patients presenting with OXPHOS defect associated with encephalomyopathy, myopathy or hepatoencephalopathy (N = 15). The patients with identified genetic aetiology are marked in the graph with black and marked alphabetically according to the patient ID number in the Supplemental Table 1 as follows: a = 30; b = 60; c = 67; d = 85
339487_1_En_438_MOESM5_ESM.docx (30 kb)
Supplemental Table 1. The clinical phenotypes, mitochondrial DNA content in the muscle, results of the genetic studies and results of respiratory chain activity measurements of all the patients in the study (N = 104). In the supplemental table, the patients’ IDs are given in numerical order. The patients with mtDNA depletion or deletion (P1–P5) are highlighted. mo month, y years

References

  1. Acham-Roschitz B, Plecko B, Lindbichler F, Bittner R, Mache CJ, Sperl W, Mayr JA (2009) A novel mutation of the RRM2B gene in an infant with early fatal encephalomyopathy, central hypomyelination, and tubulopathy. Mol Genet Metab 98:300–304PubMedCrossRefGoogle Scholar
  2. Alberio S, Mineri R, Tiranti V, Zeviani M (2007) Depletion of mtDNA: syndromes and genes. Mitochondrion 7:6–12PubMedCrossRefGoogle Scholar
  3. Bornstein B, Area E, Flanigan KM et al (2008) Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene. Neuromuscul Disord 18:453–459PubMedCentralPubMedCrossRefGoogle Scholar
  4. Calvo SE, Compton AG, Hershman SG et al (2012) Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med 4(118):118ra10. doi: 10.1126/scitranslmed.3003310 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Carrozzo R, Dionisi-Vici C, Steuerwald U et al (2007) SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130:862–874PubMedCrossRefGoogle Scholar
  6. Chan SS, Copeland WC (2009) DNA polymerase gamma and mitochondrial disease: understanding the consequence of POLG mutations. Biochim Biophys Acta 1787:312–319PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chinnery PF, DiMauro S, Shanske S et al (2004) Risk of developing a mitochondrial DNA deletion disorder. Lancet 364:592–596PubMedCrossRefGoogle Scholar
  8. Dimmock DP, Zhang Q, Dionisi-Vici C et al (2008) Clinical and molecular features of mitochondrial DNA depletion due to mutations in deoxyguanosine kinase. Hum Mutat 29:330–331PubMedCrossRefGoogle Scholar
  9. Dimmock D, Tang LY, Schmitt ES, Wong LJ (2010) Quantitative evaluation of the mitochondrial DNA depletion syndrome. Clin Chem 56:1119–1127PubMedCrossRefGoogle Scholar
  10. El-Hattab AW, Scaglia F (2013) Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 10:186–198PubMedCentralPubMedCrossRefGoogle Scholar
  11. Elpeleg O, Miller C, Hershkovitz E et al (2005) Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am J Hum Genet 76:1081–1086PubMedCentralPubMedCrossRefGoogle Scholar
  12. He L, Chinnery PF, Durham SE et al (2002) Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Res 30, e68PubMedCentralPubMedCrossRefGoogle Scholar
  13. Katsetos CD, Koutzaki S, Melvin JJ (2013) Mitochondrial dysfunction in neuromuscular disorders. Semin Pediatr Neurol 20:202–215PubMedCrossRefGoogle Scholar
  14. Kollberg G, Darin N, Benan K et al (2009) A novel homozygous RRM2B missense mutation in association with severe mtDNA depletion. Neuromuscul Disord 19:147–150PubMedCrossRefGoogle Scholar
  15. Kornmann B (2013) The molecular hug between the ER and the mitochondria. Curr Opin Cell Biol 25:443–448PubMedCrossRefGoogle Scholar
  16. Krishnan KJ, Greaves LC, Reeve AK, Turnbull DM (2007) Mitochondrial DNA mutations and aging. Ann N Y Acad Sci 1100:227–240PubMedCrossRefGoogle Scholar
  17. Krishnan KJ, Reeve AK, Samuels DC et al (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40:275–279PubMedCrossRefGoogle Scholar
  18. Lesko N, Naess K, Wibom R et al (2010) Two novel mutations in thymidine kinase-2 cause early onset fatal encephalomyopathy and severe mtDNA depletion. Neuromuscul Disord 20:198–203PubMedCrossRefGoogle Scholar
  19. Lezza AM, Cormio A, Gerardi P et al (1997) Mitochondrial DNA deletions in oculopharyngeal muscular dystrophy. FEBS Lett 418:167–170PubMedCrossRefGoogle Scholar
  20. Mandel H, Szargel R, Labay V et al (2001) The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 29:337–341PubMedCrossRefGoogle Scholar
  21. Morten KJ, Ashley N, Wijburg F et al (2007) Liver mtDNA content increases during development: a comparison of methods and the importance of age- and tissue-specific controls for the diagnosis of mtDNA depletion. Mitochondrion 7:386–395PubMedCrossRefGoogle Scholar
  22. Muqit MM, Larner AJ, Sweeney MG et al (2008) Multiple mitochondrial DNA deletions in monozygotic twins with OPMD. J Neurol Neurosurg Psychiatry 79:68–71PubMedCrossRefGoogle Scholar
  23. Nishino I, Spinazzola A, Hirano M (1999) Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283:689–692PubMedCrossRefGoogle Scholar
  24. Odoardi F, Rana M, Broccolini A et al (2003) Pathogenic role of mtDNA duplications in mitochondrial diseases associated with mtDNA deletions. Am J Med Genet A 118A:247–254PubMedCrossRefGoogle Scholar
  25. Ostergaard E, Christensen E, Kristensen E, Mogensen B, Duno M, Shoubridge EA, Wibrand F (2007a) Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am J Hum Genet 81:383–387PubMedCentralPubMedCrossRefGoogle Scholar
  26. Ostergaard E, Hansen FJ, Sorensen N et al (2007b) Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 130:853–861PubMedCrossRefGoogle Scholar
  27. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45PubMedCentralPubMedCrossRefGoogle Scholar
  28. Poulton J (1992) Duplications of mitochondrial DNA: implications for pathogenesis. J Inherit Metab Dis 15:487–498PubMedCrossRefGoogle Scholar
  29. Poulton J, Harley HG, Dasmahapatra J, Brown GK, Potter CG, Sykes B (1995) Mitochondrial DNA does not appear to influence the congenital onset type of myotonic dystrophy. J Med Genet 32:732–735PubMedCentralPubMedCrossRefGoogle Scholar
  30. Rahman S, Poulton J (2009) Diagnosis of mitochondrial DNA depletion syndromes. Arch Dis Child 94:3–5PubMedCrossRefGoogle Scholar
  31. Remes AM, Majamaa-Voltti K, Karppa M et al (2005) Prevalence of large-scale mitochondrial DNA deletions in an adult Finnish population. Neurology 64:976–981PubMedCrossRefGoogle Scholar
  32. Renaldo F, Amati-Bonneau P, Slama A et al (2012) MFN2, a new gene responsible for mitochondrial DNA depletion. Brain 135:e223, 1–4, author reply e224, 1–3Google Scholar
  33. Sahashi K, Tanaka M, Tashiro M, Ohno K, Ibi T, Takahashi A, Ozawa T (1992) Increased mitochondrial DNA deletions in the skeletal muscle of myotonic dystrophy. Gerontology 38:18–29PubMedCrossRefGoogle Scholar
  34. Sulonen AM, Ellonen P, Almusa H et al (2011) Comparison of solution-based exome capture methods for next generation sequencing. Genome Biol 12:R94PubMedCentralPubMedCrossRefGoogle Scholar
  35. Suomalainen A, Isohanni P (2010) Mitochondrial DNA depletion syndromes–many genes, common mechanisms. Neuromuscul Disord 20:429–437PubMedCrossRefGoogle Scholar
  36. Uusimaa J, Remes AM, Rantala H et al (2000) Childhood encephalopathies and myopathies: a prospective study in a defined population to assess the frequency of mitochondrial disorders. Pediatrics 105:598–603PubMedCrossRefGoogle Scholar
  37. Uusimaa J, Evans J, Smith C et al (2014) Clinical, biochemical, cellular and molecular characterization of mitochondrial DNA depletion syndrome due to novel mutations in the MPV17 gene. Eur J Hum Genet 22:184–191PubMedCentralPubMedCrossRefGoogle Scholar
  38. Wong LJ, Perng CL, Hsu CH et al (2003) Compensatory amplification of mtDNA in a patient with a novel deletion/duplication and high mutant load. J Med Genet 40, e125PubMedCentralPubMedCrossRefGoogle Scholar
  39. Yu-Wai-Man P, Chinnery PF (2012) Dysfunctional mitochondrial maintenance: what breaks the circle of life? Brain 135:9–11PubMedCrossRefGoogle Scholar
  40. Zeviani M, Bresolin N, Gellera C et al (1990) Nucleus-driven multiple large-scale deletions of the human mitochondrial genome: a new autosomal dominant disease. Am J Hum Genet 47:904–914PubMedCentralPubMedGoogle Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tuomas Komulainen
    • 1
    • 2
    • 4
  • Milla-Riikka Hautakangas
    • 1
    • 2
    • 4
  • Reetta Hinttala
    • 1
    • 2
    • 4
  • Salla Pakanen
    • 1
    • 2
    • 4
  • Vesa Vähäsarja
    • 3
  • Petri Lehenkari
    • 4
    • 5
  • Päivi Olsen
    • 1
    • 2
  • Päivi Vieira
    • 1
    • 2
  • Outi Saarenpää-Heikkilä
    • 6
  • Johanna Palmio
    • 7
  • Hannu Tuominen
    • 8
  • Pietari Kinnunen
    • 5
  • Kari Majamaa
    • 4
    • 9
    • 10
  • Heikki Rantala
    • 1
    • 2
    • 4
  • Johanna Uusimaa
    • 1
    • 2
    • 4
  1. 1.PEDEGO Research Group and Medical Research Center OuluUniversity of OuluOuluFinland
  2. 2.Department of Children and Adolescents, Division of Pediatric NeurologyOulu University HospitalOYS OuluFinland
  3. 3.Department of Children and Adolescents, Division of Pediatric SurgeryOulu University HospitalOYS OuluFinland
  4. 4.Medical Research Center OuluUniversity of Oulu and Oulu University HospitalOuluFinland
  5. 5.Department of SurgeryOulu University HospitalOYS OuluFinland
  6. 6.Department of PediatricsTampere University HospitalTampereFinland
  7. 7.Department of NeurologyTampere University HospitalTampereFinland
  8. 8.Department of PathologyOulu University HospitalOYS OuluFinland
  9. 9.Clinical Neuroscience CenterUniversity of OuluOuluFinland
  10. 10.Department of NeurologyOulu University HospitalOYS OuluFinland

Personalised recommendations