Advertisement

Outcome of Patients with Classical Infantile Pompe Disease Receiving Enzyme Replacement Therapy in Germany

  • Andreas HahnEmail author
  • Susanne Praetorius
  • Nesrin Karabul
  • Johanna Dießel
  • Dorle Schmidt
  • Reinald Motz
  • Claudia Haase
  • Martina Baethmann
  • Julia B. Hennermann
  • Martin Smitka
  • René Santer
  • Nicole Muschol
  • Ann Meyer
  • Thorsten Marquardt
  • Martina Huemer
  • Charlotte Thiels
  • Marianne Rohrbach
  • Gökce Seyfullah
  • Eugen Mengel
Research Report
Part of the JIMD Reports book series (JIMD, volume 20)

Abstract

Purpose: Enzyme replacement therapy (ERT) has been shown to improve outcome in classical infantile Pompe disease. The purpose of this study was to assess mortality, morbidity, and shortcomings of ERT in a larger cohort of patients treated outside clinical trials. To accomplish this, we retrospectively analyzed the data of all 23 subjects with classical infantile Pompe disease having started ERT in Germany between January 2003 and December 2010.

Results: Ten patients (43%) deceased and four others (17%) became ventilator dependent. Seven infants (30.5%) made no motor progress at all, while seven (30.5%) achieved free sitting, and nine (39%) gained free walking. Besides all the seven patients (100%) attaining no improvement of motor functions, four out of the seven (57%) achieving to sit without support, and three out of the nine (33%) being able to walk independently, secondarily deteriorated, and died or became ventilator dependent. Sustained reduction of systolic function despite reversal of cardiac hypertrophy (n = 3), gastroesophageal reflux (n = 5), swallowing difficulties or failure to thrive (n = 11), recurrent pneumonias (n = 14), port system complications (n = 4), anesthesia-related incidents (n = 2), severe allergic reactions (n = 6), hearing loss (n = 3), and orthopedic deformities (n = 4) were problems frequently encountered.

Conclusion: Although this study has important shortcomings due to its retrospective nature and because important variables potentially influencing outcome were not available for a substantial amount of patients, these data suggest that classical infantile Pompe disease still remains a life-threatening condition associated with high morbidity and often dismal prognosis. Currently, a relevant number of patients do not benefit definitely from ERT.

Keywords

Enzyme replacement therapy Glycogen storage disease Lysosomal storage disorder Metabolic myopathy Pompe disease 

Notes

Acknowledgment

The authors would like to thank all patients and their parents for participating in this study. We are also grateful to Stephan Gromer, MD, Genzyme, for his support.

References

  1. Amalfitano A, Bengur AR, Morse RP et al (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 3:132–138PubMedGoogle Scholar
  2. Banugaria SG, Prater SN, Ng YK et al (2011) The impact of antibodies on clinical outcomes in diseases treated with therapeutic protein: lessons learned from infantile Pompe disease. Genet Med 13:729–736CrossRefPubMedCentralPubMedGoogle Scholar
  3. Chakrapani A, Vellodi A, Robinson P, Jones S, Wraith JE (2010) Treatment of infantile Pompe disease with alglucosidase alpha: the UK experience. J Inherit Metab Dis 33:747–750CrossRefPubMedGoogle Scholar
  4. Hahn A, Hennermann JB, Marquardt T et al (2012) M. Pompe im Kindesalter: Aktueller Stand der Diagnostik und Therapie. Monatsschr Kinderheilkd 160:1243–1250CrossRefGoogle Scholar
  5. Hirschhorn R, Reuser AJJ (2001) Glycogen storage disease type II: acid α-glucosidase (acid maltase) deficiency. In: Scriver C, Beaudet A, Valle D, Sly W (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3389–3420Google Scholar
  6. Kampmann C, Wiethoff CM, Wenzel A et al (2000) Normal values of M mode echocardiographic measurements of more than 2000 healthy infants and children in central Europe. Heart 83:667–672CrossRefPubMedCentralPubMedGoogle Scholar
  7. Kishnani PS, Nicolino M, Voit T et al (2006) Chinese hamster ovary cell-derived recombinant human α-glucosidase in infantile-onset Pompe disease. J Pediatr 149:89–97CrossRefPubMedCentralPubMedGoogle Scholar
  8. Kishnani PS, Corzo D, Nicolino M et al (2007) Recombinant human acid α-glucosidase. Major clinical benefits in infantile-onset Pompe disease. Neurology 68:1–11CrossRefGoogle Scholar
  9. Kishnani PS, Corzo D, Leslie ND et al (2009) Early treatment with alglucosidase alpha prolongs long-term survival of infants with Pompe disease. Pediatr Res 66:329–335CrossRefPubMedCentralPubMedGoogle Scholar
  10. Kishnani PS, Goldenberg PC, DeArmey SL et al (2010a) Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab 99:26–33CrossRefPubMedCentralPubMedGoogle Scholar
  11. Kishnani PS, Austin SL, Arn P et al (2010b) Glycogen storage disease type III diagnosis and management guidelines. Genet Med 12:446–463CrossRefPubMedGoogle Scholar
  12. Klinge L, Straub V, Neudorf U, Voit T (2005) Safety and efficacy of recombinant alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul Disord 15:24–31CrossRefPubMedGoogle Scholar
  13. Llerena JC Jr, Horovitz DM, Marie SK et al (2009) The Brazilian consensus on the management of Pompe disease. J Pediatr 155(4 Suppl):S47–S56CrossRefPubMedGoogle Scholar
  14. Nicolino M, Byrne B, Wraith JE et al (2009) Clinical outcomes after long-term treatment with alglucosidase alfa in infants and children with advanced Pompe disease. Genet Med 11:210–219CrossRefPubMedGoogle Scholar
  15. Poetsch O (2012) Geburten in Deutschland. Statistisches Bundesamt, Wiesbaden, Bestellnummer 0120007-12900-1Google Scholar
  16. Rohrbach M, Klein A, Köhli-Wiesner A et al (2010) CRIM-negative infantile Pompe disease: 42-month treatment outcome. J Inherit Metab Dis 33:751–757CrossRefPubMedGoogle Scholar
  17. Van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A, Van der Ploeg AT (2000) Recombinant human α-glucosidase from rabbit milk in Pompe patients. Lancet 356:397–398CrossRefPubMedGoogle Scholar
  18. Van den Hout JM, Reuser AJ, de Klerk JB, Arts WF, Smeitink JA, Van der Ploeg AT (2001) Enzyme therapy for Pompe disease with recombinant human α-glucosidase from rabbit milk. J Inherit Metab Dis 24:267–275Google Scholar
  19. Van den Hout HM, Hop W, van Diggelen OP et al (2003) The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics 112:332–340CrossRefPubMedGoogle Scholar
  20. van Gelder CM, Hoogeveen-Westerveld M, Kroos MA, Plug I, van der Ploeg AT, Reuser AJ (2014) Enzyme therapy and immune response in relation to CRIM status: the Dutch experience in classic infantile Pompe disease. J Inherit Metab DisGoogle Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andreas Hahn
    • 1
    Email author
  • Susanne Praetorius
    • 1
  • Nesrin Karabul
    • 2
  • Johanna Dießel
    • 1
  • Dorle Schmidt
    • 3
  • Reinald Motz
    • 4
  • Claudia Haase
    • 5
  • Martina Baethmann
    • 6
  • Julia B. Hennermann
    • 2
    • 7
  • Martin Smitka
    • 8
  • René Santer
    • 9
  • Nicole Muschol
    • 9
  • Ann Meyer
    • 9
  • Thorsten Marquardt
    • 10
  • Martina Huemer
    • 11
  • Charlotte Thiels
    • 12
  • Marianne Rohrbach
    • 13
  • Gökce Seyfullah
    • 2
  • Eugen Mengel
    • 2
  1. 1.Department of Child NeurologyUniversity of GiessenGiessenGermany
  2. 2.Villa metabolica, Center for Pediatric and Adolescent MedicineUniversity of MainzMainzGermany
  3. 3.Pediatric Heart Center, University of GiessenGiessenGermany
  4. 4.Department of Pediatric CardiologyElisabeth HospitalOldenburgGermany
  5. 5.Department of PediatricsHelios KlinikumErfurtGermany
  6. 6.Klinikum Dritter Orden, Children’s HospitalMunichGermany
  7. 7.Department of PediatricsCharité, UniversitätsmedizinBerlinGermany
  8. 8.Department of PediatricsUniversity of DresdenDresdenGermany
  9. 9.Department of PediatricsUniversity Medical Center EppendorfHamburgGermany
  10. 10.Department of PediatricsUniversity of MünsterMünsterGermany
  11. 11.Department of PediatricsLandeskrankenhaus BregenzBregenzAustria
  12. 12.Department of NeuropediatricsUniversity Children’s Hospital, Ruhr-University-BochumBochumGermany
  13. 13.Division of MetabolismChildren’s research center, University Children’s HospitalZürichSwitzerland

Personalised recommendations