Services-Based Systems Architecture for Modeling the Whole Cell: A Distributed Collaborative Engineering Systems Approach

  • V. A. Shiva Ayyadurai
Chapter
Part of the Communications in Medical and Care Compunetics book series (CMCC, volume 1)

Abstract

Modeling the whole cell is a goal of modern systems biology. Current approaches are neither scalable nor flexible to model complex cellular functions. They do not support collaborative development, are monolithic and, take a primarily manual approach of combining each biological pathway model’s software source code to build one large monolithic model that executes on a single computer. What is needed is a distributed collaborative engineering systems approach that offers massive scalability and flexibility, treating each part as a services-based component, potentially delivered by multiple suppliers, that can be dynamically integrated in real-time. A requirements specification for such a services-based architecture is presented. This specification is used to develop CytoSolve, a working prototype that implements the services-based architecture enabling dynamic and collaborative integration of an ensemble of biological pathway models, that may be developed and maintained by teams distributed globally. This architecture computes solutions in a parallel manner while offering ease of maintenance of the integrated model. The individual biological pathway models can be represented in SBML, CellML or in any number of formats. The EGFR model of Kholodenko with known solutions is first tested within the CytoSolve framework to prove it viability. Success of the EGFR test is followed with the development of an integrative model of interferon (IFN) response to virus infection using the CytoSolve platform. The resulting integrated model of IFN yields accurate results based on comparison with previously published in vitro and in vivo studies. A open web-based environment for collaborative testing and continued development is now underway and available on www.cytosolve.com. As more biological pathway models develop in a disparate and decentralized manner, this architecture offers a unique platform for collaborative systems biology, to build large-scale integrative models of cellular function, and eventually one day model the whole cell.

Keywords

Complex systems  Systems biology  Distributed computing  Systems architecture  Whole cell modeling Distributed Collaborative Engineering (DCE) Molecular pathways Biological networks Collaboratory  

References

  1. 1.
    Hood L, Heath JR, Phelps ME, Lin B. Systems biology and new technologies enable predictive and preventative medicine. Science. 2004;306:640–3.CrossRefGoogle Scholar
  2. 2.
    Ideker T, Lauffenburger D. Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. 2003;21:255–62.CrossRefGoogle Scholar
  3. 3.
    Kitano H. Computational systems biology. Nature. 2002;420:206–10.CrossRefGoogle Scholar
  4. 4.
    Palsson BO, Price ND, Papin JA. Development of network-based pathway definitions: the need to analyze real metabolic networks. Trends in Biotechnology. 2003;21:195–8.CrossRefGoogle Scholar
  5. 5.
    Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA 3rd. E-CELL: software environment for whole-cell simulation. Bioinformatics. 1999;15:72–84.CrossRefGoogle Scholar
  6. 6.
    Pennisi E. A low number wins the GeneSweep pool. Science. 2003;300:1484.CrossRefGoogle Scholar
  7. 7.
    Hodgkin J. What does a worm want with 20, 000 genes? Genome Biology. 2001;2:1–4.CrossRefGoogle Scholar
  8. 8.
    Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Rokshar DS. Sea anemone genome reveals the gene repertoire and genomic organization of the Eumetazoan ancestor. Berkeley: Lawrence Berkeley National Laboratory; 2007.Google Scholar
  9. 9.
    Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda C, Surendranath V, Niranjan V, Muthusamy B, Gandhi TKB, Gronborg M, Ibarrola N, Deshpande N, Shanker K, Shivashankar HN, Pandey A. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Research. 2003;13:2363–71.CrossRefGoogle Scholar
  10. 10.
    Laue Mv. Kritische Bemerkungen zu den Deutungen der Photoframme von Friedich und Knipping. Physikalische Zeitschrift. 1913;14:421–3.MATHGoogle Scholar
  11. 11.
    Patwardhan B, Warude D, Pushpangadan P, Bhatt N. Ayurveda and traditional Chinese medicine: a comparative overview. Oxford Journals Medicine Evidence-based Complementary and Alternative Medicine. 2005;2:465–73.CrossRefGoogle Scholar
  12. 12.
    Subbarayappa BV. Siddha medicine: an overview. Lancet. 1997;350:1841–4.CrossRefGoogle Scholar
  13. 13.
    Cannon WB. The wisdom of the body. New York: Norton; 1933.Google Scholar
  14. 14.
    Wiener N. Cybernetics or control and communication in the animal machine. Cambridge: The MIT Press; 1948.Google Scholar
  15. 15.
    Watson JD, Crick FH. Molecular structure of nucleic acids: a structure of deoxyribose nucleic acid. Nature. 1953;171:737–8.CrossRefGoogle Scholar
  16. 16.
    Kitano H. Perspectives on systems biology. New Generation Computing. 2000;18:199–216.CrossRefGoogle Scholar
  17. 17.
    Kitano H. Foundations of systems biology. Cambridge: The MIT Press; 2001.Google Scholar
  18. 18.
    Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ. An overview of CellML 1.1, a biological model description language. SIMULATION. 2003;79:740–7.CrossRefGoogle Scholar
  19. 19.
    Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M. BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 2006;34:D689–91.CrossRefGoogle Scholar
  20. 20.
    Snoep JL, Bruggeman F, Olivier BG, Westerhoff HV. Towards building the silicon cell: a modular approach. Biosystems. 2006;83:207–16.CrossRefGoogle Scholar
  21. 21.
    Raczynski S. Differential inclusions in system simulation. Transactions of the Society for Computer Simulation. 1996;13:47–54.Google Scholar
  22. 22.
    Bulatwicz TF. Support for model coupling: an interface-based approach. Eugene: Department of Computer and Information Science, University of Oregon; 2006. p. 216.Google Scholar
  23. 23.
    Krueger CW. Software reuse. ACM Computing Surveys (CSUR). 1992;24:131–83.CrossRefGoogle Scholar
  24. 24.
    Rajlich V, Wilde N. The role of concepts in program comprehension. In: 2002 international workshop on program comprehension. Los Alamitos, CA: IEEE Computer Society Press; 2002. p. 271–8.Google Scholar
  25. 25.
    Robinson S, Nance RE, Paul RJ, Pidd M, Taylor SJE. Simulation model reuse: definitions. benefits and obstacles., Simulation Modelling Practice and Theory. 2004;12:479–94.CrossRefGoogle Scholar
  26. 26.
    Gianchandani EP, Brautigan DL, Papin JA. Systems analyses characterize integrated functions of biochemical networks. Trends in Biochemical Sciences. 2006;31:284–91.CrossRefGoogle Scholar
  27. 27.
    Palsson B. Two-dimensional annotation of genomes. Nat Biotechnol. 2004;22:1218–9.CrossRefGoogle Scholar
  28. 28.
    Papin JA, Hunter T, Palsson BO, Subramaniam S. Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol. 2005;6:99–111.CrossRefGoogle Scholar
  29. 29.
    Hunter P, Borg T. Integration from proteins to organs: the Human Physiome project. Nature Reviews Molecular Cell Biology. 2003;4:237–43.CrossRefGoogle Scholar
  30. 30.
    Hood L, Perlmutter RM. The impact of systems approaches on biological problems in drug discovery. Nat Biotechnol. 2004;22:1215–7.CrossRefGoogle Scholar
  31. 31.
    Aderem A. Systems biology: its practice and challenges. Cell. 2005;121:511–3.CrossRefGoogle Scholar
  32. 32.
    Takahashi K, Kaizu K, Hu B, Tomita M. A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics. 2004;20:538–46.CrossRefGoogle Scholar
  33. 33.
    Cerami EG, Bader GD, Gross BE, Sander C. cPath: open source software for collecting, storing, and querying biological pathways. BMC Bioinformatics. 2006;7:497.CrossRefGoogle Scholar
  34. 34.
    Liu ET. Systems biology, integrative biology, predictive biology. Cell. 2005;121:505–6.CrossRefGoogle Scholar
  35. 35.
    Hwang D, Smith JJ, Leslie DM, Weston AD, Rust AG, Ramsey S, de Atauri P, Siegel AF, Bolouri H, Aitchison JD, Hood L. A data integration methodology for systems biology: experimental verification. Proc Natl Acad Sci USA. 2005;102:17302–7.CrossRefGoogle Scholar
  36. 36.
    Endy D, Brent R. Modelling cellular behaviour. Nature. 2001;409:391–5.CrossRefGoogle Scholar
  37. 37.
    Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H. Next generation simulation tools: the systems biology Workbench and BioSPICE integration. Omics. 2003;7:355–72.CrossRefGoogle Scholar
  38. 38.
    Lindon JC, Holmes E, Nicholson JK. Metabonomics techniques and applications to pharmaceutical research & development. Pharm Res. 2006;23:1075–88.CrossRefGoogle Scholar
  39. 39.
    Pecou E. Splitting the dynamics of large biochemical interaction networks. J Theor Biol. 2005;232:375–84.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Pennisi E. How will big pictures emerge from a sea of biological data? Science. 2005;309:94.CrossRefGoogle Scholar
  41. 41.
    Bader JS, Chant J. Systems biology. When proteomes collide, Science. 2006;311:187–8.Google Scholar
  42. 42.
    Arkin AP, Fletcher DA. Fast, cheap and somewhat in control. Genome Biol. 2006;7:114.CrossRefGoogle Scholar
  43. 43.
    Vaidehi N, Goddard WA. Atom-level simulation and modeling of biomacromolecules. In: Bower JM, Bolouri H, editors. Computational modeling of genetic and biochemical networks. Cambridge: MIT Press; 2001. p. 161–3.Google Scholar
  44. 44.
    White J. Two protein interactions are intractable using molecular dynamics. In: Ayyadurai S, editor. Personal communication. Cambridge; 2007.Google Scholar
  45. 45.
    Stultz C. Intractability of using atom-by-atom molecular dynamics for modeling biological pathways. In: Ayyadurai S, editor. Personal communication. Cambridge; 2007.Google Scholar
  46. 46.
    Keller EF. A clash of two cultures. Nature. 2007;445:603.CrossRefGoogle Scholar
  47. 47.
    Noble D. Systems biology and the heart. Biosystems. 2006;83:75–80.CrossRefGoogle Scholar
  48. 48.
    Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA. 2007;104:1777–82.CrossRefGoogle Scholar
  49. 49.
    Bhalla US. Understanding complex signaling networks through models and metaphors. Prog Biophys Mol Biol. 2003;81:45–65.CrossRefGoogle Scholar
  50. 50.
    Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J. Cancer: a systems biology disease. Biosystems. 2006;83:81–90.CrossRefGoogle Scholar
  51. 51.
    Klipp E, Liebermeister W. Mathematical modeling of intracellular signaling pathways. BMC Neurosci. 2006;7(Suppl 1):S10.CrossRefGoogle Scholar
  52. 52.
    Asthagiri AR, Lauffenburger DA. Bioengineering models of cell signaling. Annu Rev Biomed Eng. 2000;2:31–53.CrossRefGoogle Scholar
  53. 53.
    Ma’ayan A, Jenkins SL, Neves S, Hasseldine A, Grace E, Dubin-Thaler B, Eungdamrong NJ, Weng G, Ram PT, Rice JJ, Kershenbaum A, Stolovitzky GA, Blitzer RD, Iyengar R. Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science. 2005;309:1078–83.CrossRefGoogle Scholar
  54. 54.
    Lauffenburger DA. Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci USA. 2000;97:5031–3.CrossRefGoogle Scholar
  55. 55.
    Bassingthwaighte JB, Chizeck HJ, Atlas LE, Qian H. Multiscale modeling of cardiac cellular energetics. Ann N Y Acad Sci. 2005;1047:395–424.CrossRefGoogle Scholar
  56. 56.
    Alon U. Biological networks: the tinkerer as an engineer. Science. 2003;301:1866–7.CrossRefGoogle Scholar
  57. 57.
    Kitney R, Dollery C. Systems biology: a vision for engineering and medicine. In: Klipp E, Liebermeister W, editor. Engineering. 2007.Google Scholar
  58. 58.
    Oltvai ZN, Barabasi AL. Systems biology. Life’s complexity pyramid, Science. 2002;298:763–4.Google Scholar
  59. 59.
    Seeman NC, Belcher AM. Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci USA. 2002;99(Supplement 2):6451–5.CrossRefGoogle Scholar
  60. 60.
    Morgan JJ, Surovtsev IV, Lindahl PA. A framework for whole-cell mathematical modeling. J Theor Biol. 2004;231:581–96.MathSciNetCrossRefGoogle Scholar
  61. 61.
    Sauro HM, Kholodenko BN. Quantitative analysis of signaling networks. Prog Biophys Mol Biol. 2004;86:5–43.CrossRefGoogle Scholar
  62. 62.
    Mishra J, Bhalla US. Simulations of inositol phosphate metabolism and its interaction with InsP(3)-mediated calcium release. Biophys J. 2002;83:1298–316.CrossRefGoogle Scholar
  63. 63.
    Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S. Integrative model of the response of yeast to osmotic shock. Nat Biotechnol. 2005;23:975–82.CrossRefGoogle Scholar
  64. 64.
    Hunter P, Smith N, Fernandez J, Tawhai M. Integration from proteins to organs: the IUPS Physiome Project. Mech Ageing Dev. 2005;126:187–92.CrossRefGoogle Scholar
  65. 65.
    Alvarez-Vasquez F, Sims KJ, Hannun YA, Voit EO. Integration of kinetic information on yeast sphingolipid metabolism in dynamical pathway models. J Theor Biol. 2004;226:265–91.MathSciNetCrossRefGoogle Scholar
  66. 66.
    Oda K, Kimura T, Matsuoka Y, Funahashi A, Muramatsu M, Kitano H. Map of the TLR signaling network. AfCS Research Reports. 2004;2:1–12.Google Scholar
  67. 67.
    Kitano H, Funahashi A, Matsuoka Y, Oda K. Using process diagrams for the graphical representation of biological networks. Nat Biotechnol. 2005;23:961–6.CrossRefGoogle Scholar
  68. 68.
    Schulz M, Uhlendorf J, Klipp E, Liebermeister W. SBMLmerge, a system for combining biochemical network models. Genome Inform. 2006;17:62–71.Google Scholar
  69. 69.
    Akarsu E, Fox F, Furmanski W, Haupt T. WebFlow-high-level programming environment and visual authoring toolkit for high performance distributed computing. In: Proceedings of supercomputing ‘98: high performance networking and computing. IEEE Computer Society; 1998. p. 1–7.Google Scholar
  70. 70.
    Whelan G, Castleton KJ, Buck JW, Hoopes BL, Pelton MA, Strenge DL, Gelston GM, Kickert RN. Concepts of a framework for risk analysis in multimedia environmental systems (FRAMES). In: Laboratory PNN, editor. PNNL-11748. Richland: Pacific Northwest National Laboratory; 1997.Google Scholar
  71. 71.
    Neteler M, Mitasova H. Open source GIS: A GRASS GIS approach. Springer: Boston; 2004.Google Scholar
  72. 72.
    Dewey CF. In: Ayyadurai S, editor. Personal communication; 2006.Google Scholar
  73. 73.
    Quackenbush J, Stoeckert C, Ball C, Brazma A, Gentleman R, Huber W, Irizarry R, Salit M, Sherlock G, Spellman P, Winegarden N. Top-down standards will not serve systems biology. Nature. 2006;440:24.CrossRefGoogle Scholar
  74. 74.
    Le Novere N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J, Crampin EJ, Halstead M, Klipp E, Mendes P, Nielsen P, Sauro H, Shapiro B, Snoep JL, Spence HD, Wanner BL. Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol. 2005;23:1509–15.CrossRefGoogle Scholar
  75. 75.
    Gilbert D, Fuss H, Gu X, Orton R, Robinson S, Vyshemirsky V, Kurth MJ, Downes CS, Dubitzky W. Computational methodologies for modelling, analysis and simulation of signalling networks. Brief Bioinform. 2006;7:339–53.CrossRefGoogle Scholar
  76. 76.
    Brooks F. The mythical man month: essays in software engineering. Reading, MA: Addison Wesley; 1975.Google Scholar
  77. 77.
    Ayyadurai VAS, Dewey CF. CytoSolve: A scalable computational method for dynamic integration of multiple molecular pathway models. Cell Mol Bioeng. 2010; doi:10.1007/s12195-010-0143-x.
  78. 78.
    Sato M, Taniguchi T, Tanaka N. The interferon system and interferon regulatory factor transcription factors––studies from gene knockout mice. Cytokine & Growth Factor Reviews. 2001;12:133–42.CrossRefGoogle Scholar
  79. 79.
    Bocharaov. Mathematical model of antiviral immune response III. Influenza A virus infection. J Theor Biol. 1994;167:323–9.Google Scholar
  80. 80.
    Zi Z, Cho K, Sung M. In silico identification of the key components and steps in IFN-gamma induced JAK-STAT. FEBS. 2005;579:1101–8.CrossRefGoogle Scholar
  81. 81.
    Hancioglu, B., Swigon, D., Clermont, G. A dynamical model of human immune response to influenza A virus infection. J Theor Biol. 2007;167:323–60.Google Scholar
  82. 82.
    Yamada S. Computer modeling of JAK/STAT signal transduction pathway. Genome Inform. 2001;12:282–3.Google Scholar
  83. 83.
    Cella M. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exper Med. 1999;189:821–9.Google Scholar
  84. 84.
    Cooley M. Cytokine activity after human bone marrow transplantation: production of interferons by peripheral blood mononuclear cells from recipients of HLA-Identical sibling bone marrow transplants. J Immunol. 1987;138:3688–94.Google Scholar
  85. 85.
    Takauji. CpG-DNA-induced IFN- production involves p38 MAPKdependent STAT1 phosphorylation in human plasmacytoid dendritic cell precursors. J Luekocyte Biol. 2002;72:1011–19.Google Scholar
  86. 86.
    Kimmel AR, Parent CA. The signal to move: D. discoideum go orienteering. Science. 2003;300:1525–7.CrossRefGoogle Scholar
  87. 87.
    Lauffenburger DA. Four M’s of systems biology. Cambridge: MIT; 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • V. A. Shiva Ayyadurai
    • 1
    • 2
  1. 1.Department of Biological EngineeringMassachusetts Institute of Technology (M.I.T.)CambridgeUSA
  2. 2.Systems Biology Research GroupInternational Center for Integrative Systems (I.C.I.S.)CambridgeUSA

Personalised recommendations