Recognizing Complex Human Activities via Crowd Context

Chapter
Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 6)

Abstract

This chapter examines the problem of classifying collective human activities from video sequences. A collective activity is defined by the existence of the coherent behavior among individuals in a spatial and temporal neighborhood. Examples of collective activities are queuing in a line or talking. Such types of activities cannot be just defined by considering actions of individuals in isolation but rather by observing the interactions of nearby individuals in time and space. In this chapter we discuss recent methods for analyzing collective activities through the concept of crowd context. We present various solutions for modeling the crowd context and demonstrate the flexibility and scalability of the proposed framework in a number of experiments on publicly available datasets of collective human activities.

References

  1. 1.
  2. 2.
    Amer, M.R., Todorovic, S.: A chains model for localizing participants of group activities in videos. In: Proceedings of International Conference on Computer Vision (ICCV) (2011)Google Scholar
  3. 3.
    Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: CVPR (2008)Google Scholar
  4. 4.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. PAMI 24(4), 509–522 (2002)Google Scholar
  5. 5.
    Bishop, C.M: Pattern Recognition and Machine Learning. Springer, Berlin (2006)MATHGoogle Scholar
  6. 6.
    Breiman, L., Cutler, A.: Random Forest. [online], marzec (2004)Google Scholar
  7. 7.
    Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Gool, L.V.: Robust tracking-by-detection using a detector confidence particle filter. In: ICCV (2009)Google Scholar
  8. 8.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm (2001)
  9. 9.
    Choi, W., Pantofaru, C., Savarese, S.: Detecting and tracking people using an rgb-d camera via multiple detector fusion. In: Challenges and Opportunities in Robot Perception, ICCV, Nov 2011Google Scholar
  10. 10.
    Choi, W., Savarese, S.: Multiple target tracking in world coordinate with single, minimally calibrated camera. In: ECCV, Sept 2010Google Scholar
  11. 11.
    Choi, W., Shahid, K., Savarese, S.: What are they doing?: collective activity classification using spatio-temporal relationship among people. In: VSWS (2009)Google Scholar
  12. 12.
    Choi, W., Shahid, K., Savarese, S.: Learning context for collective activity recognition. In: CVPR (2011)Google Scholar
  13. 13.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar
  14. 14.
    Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: VS-PETS (2005)Google Scholar
  15. 15.
    Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person tracking. In: CVPR (2008)Google Scholar
  16. 16.
    Ess, A., Leibe, B., Schindler, K., van Gool, L.: Robust multi-person tracking from a mobile platform. PAMI 31(10), 1831–1846 (2009)Google Scholar
  17. 17.
    Fanti, C., Zelnik-Manor, L., Perona, P.: Hybrid models for human motion recognition. In: CVPR, vol. 1, pp. 1166–1173, June 2005Google Scholar
  18. 18.
    Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. PAMI 32(9), 1627–1645 (2010)Google Scholar
  19. 19.
    Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)CrossRefGoogle Scholar
  20. 20.
    Hakeem, A., Shah, M.: Learning, detection and representation of multi-agent events in videos. AI 171, 586–605 (2007)Google Scholar
  21. 21.
    Intille, S., Bobick, A.: Recognizing planned, multiperson action. CVIU 81, 414–445 (2001)Google Scholar
  22. 22.
    Khan, Z., Balch, T., Dellaert, F.: MCMC-based particle filtering for tracking a variable number of interacting targets. PAMI 27, 1805–1819 (2005)Google Scholar
  23. 23.
    Kim, T., Wong, S.-f., Cipolla, R.: Tensor canonical correlation analysis for action classification. In: CVPR, June 2007Google Scholar
  24. 24.
    Kohli, P., Torr, P.H.S.: Dynamic graph cuts and their applications in computer vision In: Computer Vision: Detection, Recognition and Reconstruction, pp. 51–108 (2010)Google Scholar
  25. 25.
    Lan, T., Wang, Y., Mori, G., Robinovitch, S.: Retrieving actions in group contexts. In: International Workshop on Sign Gesture Activity (2010)Google Scholar
  26. 26.
    Lan, T., Wang, Y., Yang, W., Mori, G.: Beyond actions: discriminative models for contextual group activities. In: NIPS (2010)Google Scholar
  27. 27.
    Laptev, I., Lindeberg, T.: Space-time interest points. In: ICCV (2003)Google Scholar
  28. 28.
    Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008)Google Scholar
  29. 29.
    Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: Statistical Learning in Computer Vision, ECCV (2004)Google Scholar
  30. 30.
    Li, R., Chellappa, R., Zhou, S.K.: Learning multi-modal densities on discriminative temporal interaction manifold for group activity recognition. In: CVPR (2009)Google Scholar
  31. 31.
    Liu, J., Ali, S., Shah, M.: Recognizing human actions using multiple features. In: CVPR (2008)Google Scholar
  32. 32.
    Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (2011)Google Scholar
  33. 33.
    Liu, J., Luo, J., Shah, M.: Recongizing realistic actions from videos “in the wild”. In: CVPR (2009)Google Scholar
  34. 34.
    Liu, J., Shah, M., Kuipers, B., Savarese, S.: Cross-view action recognition via view knowledge transfer. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (2011)Google Scholar
  35. 35.
    Lu, W.-L., Little, J.J.: Simultaneous tracking and action recognition using the pca-hog descriptor. In: Proceedings of the 3rd Canadian Conference on Computer and Robot Vision (2006)Google Scholar
  36. 36.
    Lv, F., Nevatia, R.: Single view human action recognition using key pose matching and viterbi path searching. In: CVPR (2007)Google Scholar
  37. 37.
    Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: CVPR (2009)Google Scholar
  38. 38.
    Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling temporal structure of decomposable motion segments for activity classification. In: Proceedings of the 12th European Conference of Computer Vision (ECCV), Crete, Greece, Sept 2010Google Scholar
  39. 39.
    Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. IJCV 79, 299–318 (2008)Google Scholar
  40. 40.
    Patron, A., Marszalek, M., Zisserman, A., Reid, I.: High five: Recognising human interactions in tv shows. In: Proceedings of the BMVC (2010)Google Scholar
  41. 41.
    Pirsiavash, H., Ramanan, D., Fowlkes, C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR (2011)Google Scholar
  42. 42.
    Ramin Mehran, A.O., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR (2009)Google Scholar
  43. 43.
    Ryoo, M.S., Aggarwal, J.K.: Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities. In: ICCV (2009)Google Scholar
  44. 44.
    Ryoo, M.S., Aggarwal, J.K.: Stochastic representation and recognition of high-level group activities. IJCV 93(2), 183–200 (2010)Google Scholar
  45. 45.
    Savarese, S., DelPozo, A., Niebles, J., Fei-Fei, L.: Spatial-temporal correlatons for unsupervised action classification. In: WMVC (2008)Google Scholar
  46. 46.
    Song, Y., Goncalves, L., Perona, P.: Unsupervised learning of human motion. PAMI 25(25), 1–14 (2003)Google Scholar
  47. 47.
    Swears, E., Hoogs, A.: Learning and recognizing complex multi-agent activities with applications to american football plays. In: WACV (2011)Google Scholar
  48. 48.
    Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1473–1488 (2008)Google Scholar
  49. 49.
    Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: ICCV (2003)Google Scholar
  50. 50.
    Wojek, C., Walk, S., Roth, S., Schiele, B.: Monocular 3d scene understanding with explicit occlusion reasoning. In: CVPR (2011)Google Scholar
  51. 51.
    Wojek, C., Walk, S., Schiele, B.: Multi-cue onboard pedestrian detection. In: CVPR (2009)Google Scholar
  52. 52.
    Wong, S.-F., Kim, T.-K., Cipolla, R.: Learning motion categories using both semantic and structural information. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007)Google Scholar
  53. 53.
    Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. IJCV 75(2), 247 (2007)Google Scholar
  54. 54.
    Yao, A., Gall, J., Van Gool, L.: A hough transform-based voting framework for action recognition. In: CVPR (2010)Google Scholar
  55. 55.
    Yu, T., Kim, T.-K., Cipolla, R.: Real-time action recognition by spatiotemporal semantic and structural forest. In: Proceedings of British Machine Vision Conference (BMVC) (2010)Google Scholar
  56. 56.
    Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008)Google Scholar
  57. 57.
    Zhou, B., Wang, X., Tang, X.: Understanding collective crowd behaviors: learning mixture model of dynamic pedestrian-agents. In: CVPR (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations