Advertisement

Computational Mechanobiology in Cartilage and Bone Tissue Engineering: From Cell Phenotype to Tissue Structure

  • Thomas Nagel
  • Daniel J. Kelly
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 10)

Abstract

This chapter gives a short overview of computational models in cartilage and bone tissue engineering with a focus on how mechanical cues can regulate tissue regeneration on multiple levels, from cell phenotype to tissue architecture. The chapter begins with a brief review of single cell models with a focus on cell-substrate interactions and cytoskeletal remodelling. After summarising a number of current theories for mechanoregulated tissue differentiation, we explain how such hypotheses can either be corroborated or rejected by attempting to simulate in vivo regenerative events. We then outline a recently introduced model for MSC differentiation based on substrate stiffness and oxygen tension as well as how tissue phenotype and organisation can be explored simultaneously within a computational model. The application of computational models to aid in the design of scaffolds for bone and cartilage repair is demonstrated. We also outline how such models can be used in the design and analysis of bioreactors, demonstrating how changes in tissue structure in response to mechanical loading during bioreactor culture can potentially impact the mechanical properties of the final engineered constructs. The chapter closes with a short overview of multiscale models with relevance to tissue engineering.

Keywords

Tissue Engineering Focal Adhesion Tissue Differentiation Fracture Healing Representative Volume Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Dr. Patrick McGarry for image material. Funding was provided by IRCSET (G30345) and a SFI PIYRA award (08/YI5/B1336).

References

  1. 1.
    Ament, C., Hofer, E.P.: A fuzzy logic model of fracture healing. J. Biomechanics 33(8), 961–968 (2000). doi: 10.1016/S0021-9290(00)00049-X. http://www.sciencedirect.com/science/article/pii/S002192900000049X
  2. 2.
    Balguid, A., Rubbens, M.P., Mol, A., Bank, R.A., Bogers, A.J.J.C, van Kats, J.P., de Mol, B.A.J.M., Baaijens, F.P.T., Bouten, C.V.C.: The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets—relevance for tissue engineering. Tissue Eng. 13(7), 1501–1511 (2007). doi: 10.1089/ten.2006.0279. http://dx.doi.org/10.1089/ten.2006.0279
  3. 3.
    Barocas, V.H., Tranquillo, R.T.: An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng. 119(2), 137–145 (1997)CrossRefGoogle Scholar
  4. 4.
    Batra, N.N., Li, Y.J., Yellowley, C.E., You, L., Malone, A.M., Kim, C.H., Jacobs, C.R.: Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells. J. Biomech. 38(9), 1909–1917 (2005). doi: 10.1016/j.jbiomech.2004.08.009. http://dx.doi.org/10.1016/j.jbiomech.2004.08.009
  5. 5.
    Bian, L., Fong, J.V., Lima, E.G., Stoker, A.M., Ateshian, G.A., Cook, J.L., Hung, C.T.: Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes. Tissue Eng. Part A 16(5), 1781–1790 (2010). doi: 10.1089/ten.TEA.2009.0482. http://dx.doi.org/10.1089/ten.TEA.2009.0482
  6. 6.
    Bischofs, I.B., Schwarz, U.S.: Cell organization in soft media due to active mechanosensing. Proc. Natl Acad. Sci. U S A 100(16), 9274–9279 (2003). http://www.pnas.org/content/100/16/9274.abstract
  7. 7.
    Bjork, J., Safonov, A., Tranquillo, R.: Computational Modeling in Tissue Engineering. Oxygen Transport in Bioreactors for Engineered Vascular Tissues. Springer, Berlin-Heidelberg (2012)Google Scholar
  8. 8.
    Boccaccio, A., Pappalettere, C., Kelly, D.J.: The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann. Biomed. Eng. 35(11), 1940–1960 (2007). doi: 10.1007/s10439-007-9367-x. http://dx.doi.org/10.1007/s10439-007-9367-x
  9. 9.
    Boccaccio, A., Lamberti, L., Pappalettere, C., Cozzani, M., Siciliani, G.: Comparison of different orthodontic devices for mandibular symphyseal distraction osteogenesis: a finite element study. Am. J. Orthod. Dentofac. Orthop. 134(2), 260–269 (2008). doi: 10.1016/j.ajodo.2006.09.066. http://dx.doi.org/10.1016/j.ajodo.2006.09.066
  10. 10.
    Boccaccio, A., Ballini, A., Pappalettere, C., Tullo, D., Cantore, S., Desiate, A.: Finite element method (fem), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int. J. Biol. Sci. 7(1), 112–132 (2011)CrossRefGoogle Scholar
  11. 11.
    Boccaccio, A., Kelly, D.J., Pappalettere, C.: A mechano-regulation model of fracture repair in vertebral bodies. J. Orthop. Res. 29(3), 433–443 (2011). doi: 10.1002/jor.21231. http://dx.doi.org/10.1002/jor.21231
  12. 12.
    Burke, D., Kelly, D.: Could substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing? In: Proceedings of the ASME 2011 Summer Bioengineering Conference, Farmington, Pennsylvania, USA, 22–25 June 2011Google Scholar
  13. 13.
    Butler, D.L., Goldstein, S.A., Guilak, F.: Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122(6), 570–575 (2000)CrossRefGoogle Scholar
  14. 14.
    Byrne, D.P., Lacroix, D., Planell, J.A., Kelly, D.J., Prendergast, P.J.: Simulation of tissue differentiation in a scaffold as a function of porosity, young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28(36), 5544–5554 (2007). doi: 10.1016/j.biomaterials.2007.09.003. http://dx.doi.org/10.1016/j.biomaterials.2007.09.003
  15. 15.
    Carter, D.R., Blenman, P.R., Beauprcé, G.S.: Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J. Orthop. Res. 6(5), 736–748 (1988). doi: 10.1002/jor.1100060517. http://dx.doi.org/10.1002/jor.1100060517
  16. 16.
    Carter, D.R., Wong, M., Orr, T.E.: Musculoskeletal ontogeny, phylogeny, and functional adaptation. J. Biomech. 24(Suppl 1), 3–16 (1991). doi: 10.1016/0021-9290(91)90373-U. http://www.sciencedirect.com/science/article/pii/002192909190373U (proceedings of the NASA Symposium on the Influence of Gravity and Activity on Muscle and Bone)
  17. 17.
    Carter, D.R., Beauprcé, G.S., Giori, N.J., Helms, J.A.: Mechanobiology of skeletal regeneration. Clin. Orthop. Relat. Res. 355(355 Suppl), S41–S55 (1998)CrossRefGoogle Scholar
  18. 18.
    Chan, K.S., Liang, W., Francis, W.L., Nicolella, D.P.: A multiscale modeling approach to scaffold design and property prediction. J. Mech. Behav. Biomed. Mater. 3(8), 584–593 (2010). doi: 10.1016/j.jmbbm.2010.07.006. http://dx.doi.org/10.1016/j.jmbbm.2010.07.006
  19. 19.
    Checa, S., Prendergast, P.J.: A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng. 37(1), 129–145 (2009). doi: 10.1007/s10439-008-9594-9. http://dx.doi.org/10.1007/s10439-008-9594-9
  20. 20.
    Checa, S., Prendergast, P.J.: Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. J. Biomech. 43(5), 961–968 (2010). doi: 10.1016/j.jbiomech.2009.10.044. http://dx.doi.org/10.1016/j.jbiomech.2009.10.044
  21. 21.
    Christen, P., van Rietbergen, B., Lambers, F.M., Müller, R., Ito, K.: Bone morphology allows estimation of loading history in a murine model of bone adaptation. Biomech. Model Mechanobiol. 10(5), 663–670 (2011). doi: 10.1007/s10237-011-0327-x. http://dx.doi.org/10.1007/s10237-011-0327-x
  22. 22.
    Claes, L.E., Heigele, C.A.: Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32(3), 255–266 (1999)CrossRefGoogle Scholar
  23. 23.
    Claes, L.E., Heigele, C.A., Neidlinger-Wilke, C., Kaspar, D., Seidl, W., Margevicius, K.J., Augat, P.: Effects of mechanical factors on the fracture healing process. Clin. Orthop. Relat. Res. 355(355 Suppl), S132–S147 (1998)CrossRefGoogle Scholar
  24. 24.
    Cristofolini, L., Taddei, F., Baleani, M., Baruffaldi, F., Stea, S., Viceconti, M.: Multiscale investigation of the functional properties of the human femur. Philos. Trans. A Math. Phys. Eng. Sci. 366(1879), 3319–3341 (2008). doi: 10.1098/rsta.2008.0077. http://dx.doi.org/10.1098/rsta.2008.0077
  25. 25.
    Cullinane, D.M., Fredrick, A., Eisenberg, S.R., Pacicca, D., Elman, M.V., Lee, C., Salisbury, K., Gerstenfeld, L.C., Einhorn, T.A.: Induction of a neoarthrosis by precisely controlled motion in an experimental mid-femoral defect. J. Orthop. Res. 20(3), 579–586 (2002). doi: 10.1016/S0736-0266(01)00131-0. http://dx.doi.org/10.1016/S0736-0266(01)00131-0
  26. 26.
    Cullinane, D.M., Salisbury, K.T., Alkhiary, Y., Eisenberg, S., Gerstenfeld, L., Einhorn, T.A.: Effects of the local mechanical environment on vertebrate tissue differentiation during repair: does repair recapitulate development? J. Exp. Biol. 206(Pt 14), 2459–2471 (2003)CrossRefGoogle Scholar
  27. 27.
    Deshpande, V.S., McMeeking, R.M., Evans, A.G.: A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc. Royal Soc. A Math. Phys. Eng. Sci. 463(2079), 787–815 (2007) http://rspa.royalsocietypublishing.org/content/463/2079/787.abstract
  28. 28.
    Deshpande, V.S., Mrksich, M., McMeeking, R.M., Evans, A.G.: A bio-mechanical model for coupling cell contractility with focal adhesion formation. J. Mech. Phys. Solids 56(4), 1484–1510 (2008). doi: 10.1016/j.jmps.2007.08.006. http://www.sciencedirect.com/science/article/B6TXB-4PJM9VR-1/2/e406bd345af9e0173c1b96ef7698463f
  29. 29.
    Discher, D.E., Janmey, P., Wang, Y.l.: Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005). http://www.sciencemag.org/content/310/5751/1139.abstract
  30. 30.
    Engelmayr, G.C., Papworth, G.D., Watkins, S.C., Mayer, J.E., Sacks, M.S.: Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. J. Biomech. 39(10), 1819–1831 (2006). doi: 10.1016/j.jbiomech.2005.05.020. http://dx.doi.org/10.1016/j.jbiomech.2005.05.020
  31. 31.
    Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006). http://linkinghub.elsevier.com/retrieve/pii/S0092867406009615
  32. 32.
    Fereol, S., Fodil, R., Pelle, G., Louis, B., Laurent, V., Planus, E., Isabey, D.: Understanding adhesion sites as mechanosensitive cellular elements. In: Chapman & Hall/CRC Mathematical and Computational Biology, pp. 221–241. Chapman & Hall/CRC, London (2010). http://dx.doi.org/10.1201/9781420094558-c8
  33. 33.
    Foolen, J., van Donkelaar, C.C., Soekhradj-Soechit, S., Ito, K.: European society of biomechanics s.m. perren award 2010: an adaptation mechanism for fibrous tissue to sustained shortening. J. Biomech. 43(16), 3168–3176 (2010). doi: 10.1016/j.jbiomech.2010.07.040. http://www.sciencedirect.com/science/article/B6T82-50XJC0S-1/2/47b646146d92bb178404711cc88ec093
  34. 34.
    García-Aznar, J.M., Kuiper, J.H., Gómez-Benito, M.J., Doblaré, M., Richardson, J.B.: Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J. Biomech. 40(7), 1467–1476 (2007). doi: 10.1016/j.jbiomech.2006.06.013. http://dx.doi.org/10.1016/j.jbiomech.2006.06.013
  35. 35.
    Geris, L., Oosterwyck, H.V., Sloten, J.V., Duyck, J., Naert, I.: Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants. Comput. Methods Biomech. Biomed. Eng. 6(5–6), 277–288 (2003). doi: 10.1080/10255840310001634412. http://dx.doi.org/10.1080/10255840310001634412
  36. 36.
    Geris, L., Andreykiv, A., Oosterwyck, H.V., Sloten, J.V., van Keulen, F., Duyck, J., Naert, I.: Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber. J. Biomech. 37(5), 763–769 (2004). doi: 10.1016/j.jbiomech.2003.09.026. http://www.sciencedirect.com/science/article/B6T82-4B0PPFB-2/2/2a52f7f66103bdeb80efe3cda53aed30
  37. 37.
    Geris, L., Gerisch, A., Sloten, J.V., Weiner, R., Oosterwyck, H.V.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 251(1), 137–158 (2008). doi: 10.1016/j.jtbi.2007.11.008. http://dx.doi.org/10.1016/j.jtbi.2007.11.008
  38. 38.
    Geris, L., Schugart, R., Van Oosterwyck, H.: In silico design of treatment strategies in wound healing and bone fracture healing. Philos. Trans. A Math. Phys. Eng. Sci. 368(1920), 2683–2706 (2010). doi: 10.1098/rsta.2010.0056. http://dx.doi.org/10.1098/rsta.2010.0056
  39. 39.
    Giori, N.J., Beaupr, G.S., Carter, D.R.: Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J. Orthop. Res. 11(4), 581–591 (1993). doi: 10.1002/jor.1100110413. http://dx.doi.org/10.1002/jor.1100110413
  40. 40.
    Guilak, F., Mow, V.C.: The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 33(12), 1663–1673 (2000)CrossRefGoogle Scholar
  41. 41.
    Hambli, R., Soulat, D., Gasser, A., Benhamou, C.L.: Strain-damage coupled algorithm for cancellous bone mechano-regulation with spatial function influence. Comput. Methods Appl. Mech. Eng. 198(33–36), 2673–2682 (2009). doi: 10.1016/j.cma.2009.03.014. http://www.sciencedirect.com/science/article/pii/S004578250900139X
  42. 42.
    Hambli, R., Katerchi, H., Benhamou, C.L.: Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech. Model Mechanobiol. 10(1), 133–145 (2011). doi: 10.1007/s10237-010-0222-x. http://dx.doi.org/10.1007/s10237-010-0222-x
  43. 43.
    Hayward, L., Morgan, E.: Assessment of a mechano-regulation theory of skeletal tissue differentiation in an in vivo model of mechanically induced cartilage formation. Biomech. Model Mechanobiol. 2(2), 109–126 (2009). doi: 10.1007/s10237-009-0148-3. http://dx.doi.org/10.1007/s10237-009-0148-3
  44. 44.
    Hoenig, E., Winkler, T., Mielke, G., Paetzold, H., Schuettler, D., Goepfert, C., Machens, H.G., Morlock, M.M., Schilling, A.F.: High amplitude direct compressive strain enhances mechanical properties of scaffold-free tissue-engineered cartilage. Tissue Eng. Part A 17(9–10), 1401–1411 (2011). doi: 10.1089/ten.tea.2010.0395. http://www.liebertonline.com/doi/abs/10.1089/ten.tea.2010.0395, http://www.liebertonline.com/doi/pdf/10.1089/ten.tea.2010.0395
  45. 45.
    Huang, A., Farrell, M., Kim, M., Mauck, R.: Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur. Cells Mater. 19, 72–85 (2010)Google Scholar
  46. 46.
    Huiskes, R., Driel, W.D.V., Prendergast, P.J., Søballe, K.: A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J. Mater. Sci. Mater. Med. 8(12), 785–788 (1997)CrossRefGoogle Scholar
  47. 47.
    Hutmacher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24), 2529–2543 (2000)CrossRefGoogle Scholar
  48. 48.
    Ingber, D.E.: Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59(1), 575–599 (1997). doi: 10.1146/annurev.physiol.59.1.575. http://www.annualreviews.org/doi/abs/10.1146/annurev.physiol.59.1.575, http://www.annualreviews.org/doi/pdf/10.1146/annurev.physiol.59.1.575
  49. 49.
    Isaksson, H., van Donkelaar, C.C., Huiskes, R., Ito, K.: Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J. Orthop. Res. 24(5), 898–907 (2006). doi: 10.1002/jor.20118. http://dx.doi.org/10.1002/jor.20118
  50. 50.
    Isaksson, H., Wilson, W., van Donkelaar, C.C., Huiskes, R., Ito, K.: Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J. Biomech. 39(8), 1507–1516 (2006). doi: 10.1016/j.jbiomech.2005.01.037. http://dx.doi.org/10.1016/j.jbiomech.2005.01.037
  51. 51.
    Isaksson, H., Comas, O., van Donkelaar, C.C., Mediavilla, J., Wilson, W., Huiskes, R., Ito, K.: Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J. Biomech. 40(9), 2002–2011 (2007). doi: 10.1016/j.jbiomech.2006.09.028. http://dx.doi.org/10.1016/j.jbiomech.2006.09.028
  52. 52.
    Jaasma, M.J., O’Brien, F.J.: Mechanical stimulation of osteoblasts using steady and dynamic fluid flow. Tissue Eng. Part A 14(7), 1213–1223 (2008). doi: 10.1089/tea.2007.0321. http://dx.doi.org/10.1089/tea.2007.0321
  53. 53.
    Janmey, P.A., McCulloch, C.A.: Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9(1), 1–34 (2007). doi: 10.1146/annurev.bioeng.9.060906.151927. http://www.annualreviews.org/doi/abs/10.1146/annurev.bioeng.9.060906.151927, http://www.annualreviews.org/doi/pdf/10.1146/annurev.bioeng.9.060906.151927
  54. 54.
    Jungreuthmayer, C., Jaasma, M.J., Al-Munajjed, A.A., Zanghellini, J., Kelly, D.J., O’Brien, F.J.: Deformation simulation of cells seeded on a collagen-gag scaffold in a flow perfusion bioreactor using a sequential 3d cfd-elastostatics model. Med. Eng. Phys. 31(4), 420–427 (2009). doi: 10.1016/j.medengphy.2008.11.003. http://dx.doi.org/10.1016/j.medengphy.2008.11.003
  55. 55.
    Kelly, D.J., Prendergast, P.J.: Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38(7), 1413–1422 (2005). doi: 10.1016/j.jbiomech.2004.06.026. http://dx.doi.org/10.1016/j.jbiomech.2004.06.026
  56. 56.
    Kelly, D.J., Prendergast, P.J.: Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng. 12(9), 2509–2519 (2006). doi: 10.1089/ten.2006.12.2509. http://dx.doi.org/10.1089/ten.2006.12.2509
  57. 57.
    Kelly, K.: The third culture. Science 279(5353), 992–993 (1998). doi: 10.1126/science.279.5353.992. http://www.sciencemag.org/content/279/5353/992.short
  58. 58.
    Kelly, T.A.N., Ng, K.W., Wang, C.C.B., Ateshian, G.A., Hung, C.T.: Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures. J. Biomech. 39(8), 1489–1497 (2006). doi: 10.1016/j.jbiomech.2005.03.031. http://www.sciencedirect.com/science/article/B6T82-4GH4B00-1/2/76d2371137ab41375f98c24852d1fd7d
  59. 59.
    Khayyeri, H., Checa, S., Tgil, M., Prendergast, P.J.: Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach. J. Orthop. Res. 27(12), 1659–1666 (2009). doi: 10.1002/jor.20926. http://dx.doi.org/10.1002/jor.20926
  60. 60.
    Khayyeri, H., Checa, S., Tägil, M., O’Brien, F., Prendergast, P.: Tissue differentiation in an in vivo bioreactor: in silico investigations of scaffold stiffness. J. Mater. Sci. Mater. Med. 21, 2331–2336 (2010). doi: 10.1007/s10856-009-3973-0. http://dx.doi.org/10.1007/s10856-009-3973-0
  61. 61.
    Khayyeri, H., Checa, S., Tgil, M., Aspenberg, P., Prendergast, P.J.: Variability observed in mechano-regulated in vivo tissue differentiation can be explained by variation in cell mechano-sensitivity. J. Biomech. 44(6), 1051–1058 (2011). doi: 10.1016/j.jbiomech.2011.02.003. http://www.sciencedirect.com/science/article/pii/S0021929011000844
  62. 62.
    Khoshgoftar, M., van Donkelaar, C.C., Ito, K.: Mechanical stimulation to stimulate formation of a physiological collagen architecture in tissue-engineered cartilage: a numerical study. Comput. Methods Biomech. Biomed. Eng. 14(2), 135–144 (2011). doi: 10.1080/10255842.2010.519335. http://www.tandfonline.com/doi/abs/10.1080/10255842.2010.519335, http://www.tandfonline.com/doi/pdf/10.1080/10255842.2010.519335
  63. 63.
    Kjaer, M.: Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 84(2), 649–698 (2004). doi: 10.1152/physrev.00031.2003. http://dx.doi.org/10.1152/physrev.00031.2003
  64. 64.
    Klein, T.J., Rizzi, S.C., Reichert, J.C., Georgi, N., Malda, J., Schuurman, W., Crawford, R.W., Hutmacher, D.W.: Strategies for zonal cartilage repair using hydrogels. Macromol. Biosci. 9(11), 1049–1058 (2009). doi: 10.1002/mabi.200900176. http://dx.doi.org/10.1002/mabi.200900176
  65. 65.
    Klisch, S.M., Chen, S.S., Sah, R.L., Hoger, A.: A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants. J. Biomech. Eng. 125(2), 169–179 (2003)CrossRefGoogle Scholar
  66. 66.
    Klisch, S.M., Asanbaeva, A., Oungoulian, S.R., Masuda, K., Thonar, E.J.M., Davol, A., Sah, R.L.: A cartilage growth mixture model with collagen remodeling: validation protocols. J. Biomech. Eng. 130(3), 031006 (2008). doi: 10.1115/1.2907754. http://dx.doi.org/10.1115/1.2907754
  67. 67.
    Lacroix, D., Prendergast, P.J.: A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35(9), 1163–1171 (2002)CrossRefGoogle Scholar
  68. 68.
    Lacroix, D., Prendergast, P.J., Li, G., Marsh, D.: Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med. Biol. Eng. Comput. 40(1), 14–21 (2002)CrossRefGoogle Scholar
  69. 69.
    Lau, A.W.C., Hoffman, B.D., Davies, A., Crocker, J.C., Lubensky, T.C.: Microrheology, stress fluctuations, and active behavior of living cells. Phys. Rev. Lett. 91(19), 198101 (2003). doi: 10.1103/PhysRevLett.91.198101
  70. 70.
    Lima, E.G., Bian, L., Ng, K.W., Mauck, R.L., Byers, B.A., Tuan, R.S., Ateshian, G.A., Hung, C.T.: The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with tgf-beta3. Osteoarthr. Cartil 15(9), 1025–1033 (2007). doi: 10.1016/j.joca.2007.03.008. http://dx.doi.org/10.1016/j.joca.2007.03.008
  71. 71.
    Loboa, E.G., Beaupr, G.S., Carter, D.R.: Mechanobiology of initial pseudarthrosis formation with oblique fractures. J. Orthop. Res. 19(6), 1067–1072 (2001). http://dx.doi.org/10.1016/S0736-0266(01)00028-6
  72. 72.
    Martin, I., Wendt, D., Heberer, M.: The role of bioreactors in tissue engineering. Trends Biotechnol. 22(2), 80–86 (2004). doi: 10.1016/j.tibtech.2003.12.001. http://www.sciencedirect.com/science/article/B6TCW-4B7231G-2/2/2db5486ab02127892b5708fc9b97c5bf
  73. 73.
    Mauck, R.L., Wang, C.C.B., Oswald, E.S., Ateshian, G.A., Hung, C.T.: The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr. Cartil. 11(12), 879–890 (2003). doi: 10.1016/j.joca.2003.08.006. http://www.sciencedirect.com/science/article/B6WP3-49SWBCC-1/2/f33484507367eff3b262cb7434c5fa1d
  74. 74.
    Mauck, R.L., Wang, C.C.B., Oswald, E.S., Ateshian, G.A., Hung, C.T.: The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr. Cartil. 11(12), 879–890 (2003)CrossRefGoogle Scholar
  75. 75.
    McGarry, J.P., Fu, J., Yang, M.T., Chen, C.S., McMeeking, R.M., Evans, A.G., Deshpande, V.S.: Simulation of the contractile response of cells on an array of micro-posts. Philos. Trans. A Math. Phys. Eng. Sci. 367(1902), 3477–3497 (2009). doi: 10.1098/rsta.2009.0097. http://dx.doi.org/10.1098/rsta.2009.0097
  76. 76.
    Meyer, E.G., Buckley, C.T., Thorpe, S.D., Kelly, D.J.: Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression. J. Biomech. 43(13), 2516–2523 (2010). doi: 10.1016/j.jbiomech.2010.05.020. http://www.sciencedirect.com/science/article/pii/S0021929010002939
  77. 77.
    Mohrdieck, C., Wanner, A., Roos, W., Roth, A., Sackmann, E., Spatz, J.P., Arzt, E.: A theoretical description of elastic pillar substrates in biophysical experiments. ChemPhysChem 6(8), 1492–1498 (2005). http://dx.doi.org/10.1002/cphc.200500109
  78. 78.
    Nagel, T., Kelly, D.: The influence of fibre orientation on the equilibrium properties of neutral and charged biphasic tissues. J. Biomech. Eng. 132(11), 114506 (2010) (7 pages)CrossRefGoogle Scholar
  79. 79.
    Nagel, T., Kelly, D.: Mechanically induced structural changes during dynamic compression of engineered cartilaginous constructs can potentially explain increases in bulk mechanical properties. J. Royal Soc. Interface (2011). doi: 10.1098/rsif.2011.0449. http://rsif.royalsocietypublishing.org/content/early/2011/09/07/rsif.2011.0449.abstract, http://rsif.royalsocietypublishing.org/content/early/2011/09/07/rsif.2011.0449.full.pdf+html
  80. 80.
    Nagel, T., Kelly, D.: Remodelling of collagen fibre transition stretch and angular distribution in soft biological tissues and cell-seeded hydrogels. Biomech. Model Mechanobiol. (2011). doi: 10.1007/s10237-011-0313-3. http://dx.doi.org/10.1007/s10237-011-0313-3
  81. 81.
    Nagel, T., Kelly, D.J.: Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair. Biomech. Model Mechanobiol. 9(3), 359–372 (2010). doi: 10.1007/s10237-009-0182-1. http://dx.doi.org/10.1007/s10237-009-0182-1
  82. 82.
    Nagel, T., Loerakker, S., Oomens, C.W.J.: A theoretical model to study the effects of cellular stiffening on the damage evolution in deep tissue injury. Comput. Methods Biomech. Biomed. Eng. p. 1 (2009). doi: 10.1080/10255840902788603. http://dx.doi.org/10.1080/10255840902788603
  83. 83.
    Nelson, C.M., Jean, R.P., Tan, J.L., Liu, W.F., Sniadecki, N.J., Spector, A.A., Chen, C.S.: Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. U S A 102(33), 11594–11599 (2005). doi: 10.1073/pnas.0502575102. http://www.pnas.org/content/102/33/11594.abstract, http://www.pnas.org/content/102/33/11594.full.pdf+html
  84. 84.
    Nicolas, A., Safran, S.A.: Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys. J. 91(1), 61–73 (2006). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1479082&tool=pmcentrez&rendertype=abstract
  85. 85.
    Nicolas, A., Geiger, B., Safran, S.A.: Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc. Natl Acad. Sci. U S A 101(34), 12520–12525 (2004). http://www.pnas.org/content/101/34/12520.abstract
  86. 86.
    Oberkampf, W.L., Trucano, T.G., Hirsch, C.: Verification, validation, and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57(5), 345–384 (2004). doi: 10.1115/1.1767847. http://link.aip.org/link/?AMR/57/345/1
  87. 87.
    Pang, H., Shiwalkar, A.P., Madormo, C.M., Taylor, R.E., Andriacchi, T.P., Kuhl, E.: Computational modeling of bone density profiles in response to gait: a subject-specific approach. Biomech. Model Mechanobiol. (2011). doi: 10.1007/s10237-011-0318-y. http://dx.doi.org/10.1007/s10237-011-0318-y
  88. 88.
    Pathak, A., Deshpande, V.S., McMeeking, R.M., Evans, A.G.: The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. Royal Soc. Interface 5(22), 507–524 (2008). http://rsif.royalsocietypublishing.org/content/5/22/507.abstract
  89. 89.
    Pauwels, F.: Eine neue Theorie über den Einflu mechanischer Reize auf die Differenzierung der Stützgewebe. Anat. Embryol. 121(6), 478–515 (1960). http://dx.doi.org/10.1007/BF00523401
  90. 90.
    Perez, M., Prendergast, P.: Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J. Biomech. 40, 2244–2253 (2007). http://linkinghub.elsevier.com/retrieve/pii/S0021929006003988
  91. 91.
    Prendergast, P., Huiskes, R., Sballe, K.: Esb research award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30(6), 539–548 (1997)CrossRefGoogle Scholar
  92. 92.
    Prendergast, P.J., Galibarov, P.E., Lowery, C., Lennon, A.B.: Computer simulating a clinical trial of a load-bearing implant: an example of an intramedullary prosthesis. J. Mech. Behav. Biomed. Mater. 4(8), 1880–1887 (2011). doi: 10.1016/j.jmbbm.2011.06.005. http://dx.doi.org/10.1016/j.jmbbm.2011.06.005
  93. 93.
    Raimondi, M., Causin, P., Lagana, M., Zunino, P., Sacco, R.: Computational Modeling in Tissue Engineering. Multiphysics Computational Modeling in Cartilage Tissue Engineering. Springer, Berlin-Heidelberg (2012)Google Scholar
  94. 94.
    Reina-Romo, E., Gómez-Benito, M., García-Aznar, J., Domínguez, J., Doblaré, M.: Modeling distraction osteogenesis: analysis of the distraction rate. Biomech. Model. Mechanobiol. 8, 323–335 (2009). doi: 10.1007/s10237-008-0138-x. http://dx.doi.org/10.1007/s10237-008-0138-x
  95. 95.
    Roux, W.: Beiträge zur Morphologie der funktionellen Anpassung. 3. Beschreibung und Erluterung einer knöchernen Kniegelenksankylose. Arch. Anat. Entwicklungsgeschichte 10, 120–158 (1885)Google Scholar
  96. 96.
    Rubbens, M.P., Mol, A., van Marion, M.H., Hanemaaijer, R., Bank, R.A., Baaijens, F.P.T., Bouten, C.V.C.: Straining mode-dependent collagen remodeling in engineered cardiovascular tissue. Tissue Eng. Part A 15(4), 841–849 (2009). doi: 10.1089/ten.tea.2008.0185. http://dx.doi.org/10.1089/ten.tea.2008.0185
  97. 97.
    Sacks, M.S., Smith, D.B., Hiester, E.D.: The aortic valve microstructure: effects of transvalvular pressure. J. Biomed. Mater. Res. 41(1), 131–141 (1998). http://dx.doi.org/10.1002/(SICI)1097-4636(199807)41:1<131::AID-JBM16>3.0.CO;2-Q
  98. 98.
    Sander, E.A., Stylianopoulos, T., Tranquillo, R.T., Barocas, V.H.: Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc. Natl Acad. Sci. U S A 106(42), 17675–17680 (2009). doi: 10.1073/pnas.0903716106. http://dx.doi.org/10.1073/pnas.0903716106
  99. 99.
    Sandino, C., Planell, J., Lacroix, D.: A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41(5), 1005–1014 (2008). doi: 10.1016/j.jbiomech.2007.12.011. http://www.sciencedirect.com/science/article/pii/S0021929007005428
  100. 100.
    Sandino, C., Checa, S., Prendergast, P.J., Lacroix, D.: Simulation of angiogenesis and cell differentiation in a cap scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials 31(8), 2446–2452 (2010). doi: 10.1016/j.biomaterials.2009.11.063. http://dx.doi.org/10.1016/j.biomaterials.2009.11.063
  101. 101.
    Sanz-Herrera, J., Garca-Aznar, J., Doblar, M.: Micro-macro numerical modelling of bone regeneration in tissue engineering. Comput. Methods Appl. Mech. Eng. 197(33–40), 3092–3107 (2008). doi: 10.1016/j.cma.2008.02.010. http://www.sciencedirect.com/science/article/pii/S0045782508000704
  102. 102.
    Sanz-Herrera, J.A., García-Aznar, J.M., Doblaré, M.: On scaffold designing for bone regeneration: a computational multiscale approach. Acta. Biomater. 5(1), 219–229 (2009). doi: 10.1016/j.actbio.2008.06.021. http://dx.doi.org/10.1016/j.actbio.2008.06.021
  103. 103.
    Sanz-Herrera, J.A., Doblaré, M., García-Aznar, J.M.: Scaffold microarchitecture determines internal bone directional growth structure: a numerical study. J. Biomech. 43(13), 2480–2486 (2010). doi: 10.1016/j.jbiomech.2010.05.027. http://dx.doi.org/10.1016/j.jbiomech.2010.05.027
  104. 104.
    Semple, J.L., Woolridge, N., Lumsden, C.J.: In vitro, in vivo, in silico: computational systems in tissue engineering and regenerative medicine. Tissue Eng. 11(3–4), 341–356 (2005). doi: 10.1089/ten.2005.11.341. http://dx.doi.org/10.1089/ten.2005.11.341
  105. 105.
    Sheehy, E.J., Buckley, C.T., Kelly, D.J.: Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 63(11), 3284–3293 (2011). doi: 10.1016/j.bbrc.2011.11.105. http://www.sciencedirect.com/science/article/pii/S0006291X11021267
  106. 106.
    Shefelbine, S.J., Augat, P., Claes, L., Simon, U.: Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J. Biomech. 38(12), 2440–2450 (2005). doi: 10.1016/j.jbiomech.2004.10.019. http://dx.doi.org/10.1016/j.jbiomech.2004.10.019
  107. 107.
    Simon, U., Augat, P., Utz, M., Claes, L.: A numerical model of the fracture healing process that describes tissue development and revascularisation. Comput. Methods Biomech. Biomed. Eng. 14(1), 79–93 (2011). doi: 10.1080/10255842.2010.499865. http://dx.doi.org/10.1080/10255842.2010.499865
  108. 108.
    Stops, A.J.F., Heraty, K.B., Browne, M., O’Brien, F.J., McHugh, P.E.: A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. J. Biomech. 43(4), 618–626 (2010). doi: 10.1016/j.jbiomech.2009.10.037. http://dx.doi.org/10.1016/j.jbiomech.2009.10.037
  109. 109.
    Sun, W., Darling, A., Starly, B., Nam, J.: Computer-aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem. 39(1), 29–47 (2004). doi: 10.1042/BA20030108. http://dx.doi.org/10.1042/BA20030108
  110. 110.
    Sun, W., Starly, B., Darling, A., Gomez, C.: Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol. Appl. Biochem. 39(1), 49–58 (2004). doi: 10.1042/BA20030109. http://dx.doi.org/10.1042/BA20030109
  111. 111.
    van der Meulen, M.C.H., Huiskes, R.: Why mechanobiology? a survey article. J. Biomech. 35(4), 401–414 (2002)CrossRefGoogle Scholar
  112. 112.
    van Turnhout, M., Kranenbarg, S., van Leeuwen, J.: Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage. Biomech. Model. Mechanobiol. 10(2), 269–279 (2010). http://dx.doi.org/10.1007/s10237-010-0233-7,10.1007/s10237-010-0233-7
  113. 113.
    Wang, J.: Substrate deformation determines actin cytoskeleton reorganization: a mathematical modeling and experimental study. J. Theor. Biol. 202(1), 33–41 (2000). doi: 10.1006/jtbi.1999.1035. http://www.sciencedirect.com/science/article/B6WMD-45CWX3K-7T/2/6c255986d529b28f0ff948b2bc2d63ac
  114. 114.
    Wei, Z., Deshpande, V.S., McMeeking, R.M., Evans, A.G.: Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch. J. Biomech. Eng. 130(3), 031009 (2008). doi: 10.1115/1.2907745. http://dx.doi.org/10.1115/1.2907745
  115. 115.
    Wilson, W., Driessen, N.J.B., van Donkelaar, C.C., Ito, K.: Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr. Cartil. 14(11), 1196–1202 (2006). doi: 10.1016/j.joca.2006.05.006. http://dx.doi.org/10.1016/j.joca.2006.05.006
  116. 116.
    Wren, T.A., Beaupr, G.S., Carter, D.R.: Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia. J. Rehabil. Res. Dev. 37(2), 135–143 (2000)Google Scholar
  117. 117.
    Yan, D., Zhou, G., Zhou, X., Liu, W., Zhang, W.J., Luo, X., Zhang, L., Jiang, T., Cui, L., Cao, Y.: The impact of low levels of collagen ix and pyridinoline on the mechanical properties of in vitro engineered cartilage. Biomaterials 30(5), 814–821 (2009). doi: 10.1016/j.biomaterials.2008.10.042. http://www.sciencedirect.com/science/article/pii/S0142961208008168

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College DublinDublin 2Ireland
  2. 2.Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College DublinDublin 2Ireland

Personalised recommendations