Advertisement

SOFA: A Multi-Model Framework for Interactive Physical Simulation

  • François Faure
  • Christian Duriez
  • Hervé Delingette
  • Jérémie Allard
  • Benjamin Gilles
  • Stéphanie Marchesseau
  • Hugo Talbot
  • Hadrien Courtecuisse
  • Guillaume Bousquet
  • Igor Peterlik
  • Stéphane Cotin
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 11)

Abstract

Simulation Open Framework Architecture (SOFA) is an open-source C++ library primarily targeted at interactive computational medical simulation. SOFA facilitates collaborations between specialists from various domains, by decomposing complex simulators into components designed independently and organized in a scenegraph data structure. Each component encapsulates one of the aspects of a simulation, such as the degrees of freedom, the forces and constraints, the differential equations, the main loop algorithms, the linear solvers, the collision detection algorithms or the interaction devices. The simulated objects can be represented using several models, each of them optimized for a different task such as the computation of internal forces, collision detection, haptics or visual display. These models are synchronized during the simulation using a mapping mechanism. CPU and GPU implementations can be transparently combined to exploit the computational power of modern hardware architectures. Thanks to this flexible yet efficient architecture, SOFA can be used as a test-bed to compare models and algorithms, or as a basis for the development of complex, high-performance simulators.

Keywords

Smooth Particle Hydrodynamic Collision Detection Haptic Feedback Smooth Particle Hydrodynamic Hexahedral Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allard, J., Cotin, S., Faure, F., Bensoussan, P.-J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: SOFA—an open source framework for medical simulation. In: Medicine Meets Virtual Reality, MMVR 15, February, 2007, pp. 1–6, Long Beach, California, Etats-Unis, (2007)Google Scholar
  2. 2.
    Wei, Y., Cotin, S., Fang, L., Allard, J., Pan, C., Ma, S.: Toward real-time simulation of blood-coil interaction during aneurysm embolization. In: Medical Image Computing and Computer-Assisted Intervention, MICCAI 2009, vol. 5761, pp. 198–205. Springer, Berlin (2009)Google Scholar
  3. 3.
    Hermann, E., Faure, F., Raffin, B.: Ray-traced collision detection for deformable bodies. In: 3rd International Conference on Computer Graphics Theory and Applications, GRAPP 2008, January, 2008, Funchal, Madeira, Portugal, January 2008Google Scholar
  4. 4.
    Allard, J., Faure, F., Courtecuisse, H., Falipou, F., Duriez, C., Kry, P.G.:Volume contact constraints at arbitrary resolution. ACM Trans. Graph (Proceedings of SIGGRAPH 2010) 29(3), 205–223 (2010)Google Scholar
  5. 5.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In:SIGGRAPH ’98, pp. 43–54. ACM Press, New york (1998)Google Scholar
  6. 6.
    Courtecuisse, H., Allard, J., Duriez, C., Cotin, S.: Asynchronous preconditioners for efficient solving of non-linear deformations. In: Proceedings of Virtual Reality Interaction and Physical Simulation (VRIPHYS), November 2010Google Scholar
  7. 7.
    Duriez, C., Dubois, F., Andriot, C., Kheddar, A.: Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans. Vis. Comput. Graph. 12(1), 36–47 (2006)CrossRefGoogle Scholar
  8. 8.
    Duriez, C., Courtecuisse, H., de la Plata Alcalde, J.-P., Bensoussan, P.-J.: Contact skinning. In: Eurographics Conference (short paper) (2008)Google Scholar
  9. 9.
    Courtecuisse, H., Jung, H., Allard, J., Duriez, C., Lee, D.Y., Cotin, S.: Gpu-based real-time soft tissue deformation with cutting and haptic feedback. Prog. Biophys. Mol. Biol. 103(2–3):159–168 (2010) (Special Issue on Soft Tissue Modelling)Google Scholar
  10. 10.
    Duriez, C., Guébert, C., Marchal, M., Cotin, S., Grisoni, L.: Interactive simulation of flexible needle insertions based on constraint models. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) Proceedings of MICCAI 2009, vol. 5762, pp. 291–299. Springer, (2009)Google Scholar
  11. 11.
    Saupin, G., Duriez, C., Cotin, S.: Contact model for haptic medical simulations. In: ISBMS ’08: Proceedings of the 4th International Symposium on Biomedical Simulation, pp. 157–165, Springer, Berlin (2008)Google Scholar
  12. 12.
    Courtecuisse, H., Allard, J., Duriez, C., Cotin, S.: Preconditionerbased contact response and application to cataract surgery. In: MICCAI 2011. Springer, September 2011Google Scholar
  13. 13.
    Faure, F., Barbier, S., Allard, J., Falipou, F.: Image-based collision detection and response between arbitrary volumetric objects. In: ACM Siggraph/Eurographics Symposium on Computer Animation, SCA 2008, July, 2008, Dublin, Irlande, July 2008Google Scholar
  14. 14.
    Krüger, J., Westermann, R.: A GPU framework for solving systems of linear equations. In: GPU Gems 2, chapter 44, pp. 703–718. Addison-Wesley, Boston (2005)Google Scholar
  15. 15.
    Buatois, L., Caumon, G., Lévy, B.: Concurrent number cruncher— a GPU implementation of a general sparse linear solver. Int. J. Parallel Emerg. Distrib. Syst. 24(3), 205–223 (2009)CrossRefGoogle Scholar
  16. 16.
    Allard, J., Courtecuisse, H., Faure, F.: Implicit FEM solver on GPU for interactive deformation simulation. In: GPU Computing Gems Jade Edition, chapter 21. Elsevier, (2011)Google Scholar
  17. 17.
    Monaghan, J.J.: An introduction to sph. Comput. Phys. Commun. 48(1), 88–96 (1988)CrossRefGoogle Scholar
  18. 18.
    Richard, J., Adams, B.H.: Stable haptic interaction with virtual environments. IEEE Trans. Robot. Autom. pp. 465–474 (1999)Google Scholar
  19. 19.
    Peterlick, I., Nouicer, M., Duriez, C., Cotin, S., Kheddar, A.: Constraint-based haptic rendering of multirate compliant mechanisms. IEEE Transactions on Haptics, Accepted with minor revGoogle Scholar
  20. 20.
    Chapelle, D., Tallec, P.L., Moireau, P., Sorine, M.: An energy-preserving muscle tissue model: formulation and compatiblediscretizations. IJMCE (2010)Google Scholar
  21. 21.
    Peyrat, J.-M., Sermesant, M., Pennec, X., Delingette, H., Xu, C.-Y., Eliot, R. McVeigh, Ayache, N.: A computational framework for the statistical analysis of cardiac diffusion tensors: Application to a small database of canine hearts. IEEE Trans. Med. Imaging 26(11), 1500–1514. PMID: 18041265 November (2007)Google Scholar
  22. 22.
    Sermesant, M., Peyrat, J.M., Chinchapatnam, P., Billet, F., Mansi, T., Rhode, K., Delingette, H., Razavi, R., Ayache, N.: Toward patient-specific myocardial models of the heart. Heart Fail. Clin. 4(3), 289–301(2008)Google Scholar
  23. 23.
    Mansi, T., André, B., Lynch, M., Sermesant, M., Delingette, H., Boudjemline, Y., Ayache, N.: Virtual pulmonary valve replacement interventions with a personalised cardiac electromechanical model. In: Recent Advances in the 3D Physiological Human, pp. 201–210. Springer, November (2009)Google Scholar
  24. 24.
    Pernod, E., Sermesant, M., Konukoglu, E., Relan, J., Delingette, H., Ayache, N.: A multifront eikonal model of cardiac electrophysiology for interactive simulation of radio-frequency ablation. Comput. Graph. 35, 431–440 (2011)CrossRefGoogle Scholar
  25. 25.
    Gilles, B., Bousquet, G., Faure, F., Pai, D.K.: Frame-based elastic models. ACM Trans. Graph. 30(2), (2011)Google Scholar
  26. 26.
    Faure, F., Gilles, B., Bousquet, G., Pai, D.K.: Sparse meshless models of complex deformable solids. ACM Trans. Graph. (2011)Google Scholar
  27. 27.
    Marchesseau, S., Heimann, T., Chatelin, S., Willinger, R., Delingette, H.: Multiplicative jacobian energy decomposition method for fast porous visco-hyperelastic soft tissue model. In: Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI’10), LNCS, Springer (2010)Google Scholar
  28. 28.
    Comas, O., Duriez, C., Cotin, S.: Shell model for reconstruction and real-time simulation of thin anatomical structures. In: Jiang, T., Navab, N., Pluim, J., Viergever, M. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. Lecture Notes in Computer Science, vol. 6362, pp. 371–379. Springer, Berlin, (2010)Google Scholar
  29. 29.
    Peterlik, I., Nouicer, M., Duriez, C., Cotin, S., Kheddar, A.: Constraint-based haptic rendering of multirate compliant mechanisms. Transactions on Haptics – Special Issue on Haptics in Medicine and Clinical Skill Acquisition, to appear, September 2011Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • François Faure
    • 1
  • Christian Duriez
    • 2
  • Hervé Delingette
    • 3
  • Jérémie Allard
    • 2
  • Benjamin Gilles
    • 4
  • Stéphanie Marchesseau
    • 3
  • Hugo Talbot
    • 2
  • Hadrien Courtecuisse
    • 2
  • Guillaume Bousquet
    • 1
  • Igor Peterlik
    • 2
  • Stéphane Cotin
    • 2
  1. 1.University Joseph Fourier, INRIA, LJK-CNRSGrenobleFrance
  2. 2.INRIA, University of LilleLilleFrance
  3. 3.INRIA, Sophia-AntipolisNiceFrance
  4. 4.INRIAMontpellierFrance

Personalised recommendations