Advertisement

Modelling Cerebral Aneurysm Evolution

  • Paul N. WattonEmail author
  • Yiannis Ventikos
  • Gerhard A. Holzapfel
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 7)

Abstract

We present a fluid–solid-growth model for the evolution of a saccular cerebral aneurysm on the internal carotid sinus artery. The model utilises a realistic constitutive model of the arterial wall that accounts for the structural arrangement of collagen fibres in the medial and adventitial layers, the natural reference configurations in which the collagen fibres are recruited to load bearing and the mass of the elastin and collagenous constituents. The structural model is integrated into a patient-specific geometry of the internal carotid artery. This enables growth and remodelling (G&R) of the aneurysmal section to be explicitly linked to physiologically realistic haemodynamic stimuli. In addition, a quasi-static approach is used to obtain the geometry of the aneurysmal section at systolic and diastolic pressures, enabling G&R to be explicitly linked to the magnitude of the cyclic stretches. To our knowledge, this is the first patient-specific model of cerebral aneurysm evolution that incorporates a realistic constitutive model of the arterial wall and explicitly links G&R to the pulsatile mechanical environment. It will provide the basis for further investigating and elucidating the aetiology of the disease.

Keywords

Wall Shear Stress Collagen Fibre Arterial Wall Collagen Fabric Cyclic Stretch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support for this research was partly provided by @neurIST, an Integrated EU Project (Call Identifier FP6-2004-IST-4) and The Centre of Excellence in Personalized Healthcare (funded by the Wellcome Trust and EPSRC, grant number WT 088877/Z/09/Z). This support is gratefully acknowledged. We acknowledge the Harwell Software Library (http://www.hsl.ac.uk) for granting UK academics the free use of its FORTRAN subroutines in non-commercial applications. MA38 was employed to solve the linear system that arises in the Newton iteration, which is required to update the deformation at successive time steps.

References

  1. 1.
    Resnick, N., Yahav, H., Shay-Salit, A., Shushy, M., Schubert, S., Zilberman, L.C.M., Wofovitz, E.: Fluid shear stress and the vascular endothelium: for better and for worse. Prog. Biophys. 81, 177–199 (2003)CrossRefGoogle Scholar
  2. 2.
    Chatziprodromou, I., Poulikakos, D., Ventikos, Y.: On the influence of variation in haemodynamic conditions on the generation and growth of cerebral aneurysm and atherogenesis: a computational model. J. Biomech. 40, 3626–3640 (2007)CrossRefGoogle Scholar
  3. 3.
    Chatziprodromou, I., Tricoli, A., Poulikakos, D., Ventikos, Y.: Haemodynamics and wall remodelling of a growing cerebral aneurysm: A computational model. J. Biomech. 40, 412–426 (2007)CrossRefGoogle Scholar
  4. 4.
    Tateshima, S., Tanishita, K., Omura, H., Villablanca, J.P., Vinuela, F.: Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: In vitro study using longitudinal CT angiogram database. Am. J. Neuroradiol. 28, 622–627 (2007)Google Scholar
  5. 5.
    Krex, D., Schackert, H.K., Schackert, G.: Genesis of cerebral aneurysms—an update. Acta Neurochirurgica (Wien) 143, 429–448 (2001)CrossRefGoogle Scholar
  6. 6.
    Juvela, S.: Treatment options of unruptured intracranial aneurysms. Stroke 35, 372–374 (2004)CrossRefGoogle Scholar
  7. 7.
    Brisman, J.L., Song, J.K., Newell, D.W.: Cerebral aneurysms. New Eng. J. Med. 355, 928–939 (2006)CrossRefGoogle Scholar
  8. 8.
    Peters, D.G., Kassam, A.B., Feingold, E., Heidrich-O’Hare, E., Yonas H., Ferrell, R.E., Brufsky, A.: Molecular anatomy of an intracranial aneurysm coordinated expression of genes involved in wound healing and tissue remodeling. Stroke 32, 1036–1042 (2001)Google Scholar
  9. 9.
    Humphrey, J.D., Kyriacou, S.K.: The use of laplace’s equation in aneurysm mechanics. Neurol. Res. 18, 204–208 (1996)Google Scholar
  10. 10.
    Kyriacou, S.K., Humphrey, J.D.: Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. J. Biomech. 29, 1015–1022 (1996)CrossRefGoogle Scholar
  11. 11.
    Ryan, J.M., Humphrey, J.D.: Finite element based predictions of preferred material symmetries in saccular aneurysms. Ann. Biomed. Eng. 27, 641–647 (1999)CrossRefGoogle Scholar
  12. 12.
    Shah, A.D., Humphrey, J.D.: Finite strain elastodynamics of intracranial saccular aneurysms. J. Biomech. 32, 593–599 (1999)CrossRefGoogle Scholar
  13. 13.
    Seshaiyer, P., Humphrey, J.D.: On the potentially protective role of contact constraints on saccular aneurysms. J. Biomech. 34, 607–612 (2001)CrossRefGoogle Scholar
  14. 14.
    David, G., Humphrey, J.D.: Further evidence for the dynamic stability of intracranial saccular aneurysms. J. Biomech. 36, 1143–1150 (2003)CrossRefGoogle Scholar
  15. 15.
    Daniel, J.C., Tongen, A., Warne, D.A., Warne, P.G.: A 3D nonlinear anisotropic spherical inflation model for intracranial saccular aneurysm elastodynamics. Math. Mech. Solid. 15, 279–307 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Figueroa, C.A., Vignon-Clementel, i.e.,, Jansen, K.E., Hughes, T.J.R., Taylor, C.A.: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Meth. Appl. Mech. Eng. 195, 5685–5706 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hoi, Y., Woodward, S.H., Kim, M., Taulbee, D.B., Meng, H.: Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. ASME J. Biomech. Eng. 128, 844–851 (2006)CrossRefGoogle Scholar
  18. 18.
    Valencia, A.A., Guzmn, A.M., Finol, E.A., Amon, C.H.: Blood flow dynamics in saccular aneurysm models of the basilar artery. ASME J. Biomech. Eng. 128, 516–526 (2006)CrossRefGoogle Scholar
  19. 19.
    Liou, T.M., Li, Y.C., Juan, W.C.: Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles. J. Biomech. 40, 1268–1275 (2007)CrossRefGoogle Scholar
  20. 20.
    Utter, B., Rossmann, J.S.: Numerical simulation of saccular aneurysm hemodynamics: Influence of morphology on rupture risk. J. Biomech. 40, 2716–2722 (2007)CrossRefGoogle Scholar
  21. 21.
    Ford, M.D., Lee, S.W., Lownie, S.P., Holdsworth, D.W., Steinman, D.A.: On the effect of parent aneurysm angle on flow patterns in basilar tip aneurysms: Towards a surrogate geometric marker of intra-aneurismal hemodynamics. J. Biomech. 41, 241–248 (2008)CrossRefGoogle Scholar
  22. 22.
    Ford, M.D., Nikolov, H.N., Milner, J.S., Lownie, S.P., DeMont, E.M., Kalata, W., Loth, F., Holdsworth, D.W., Steinman, D.A.: PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130, 021015 (2008)CrossRefGoogle Scholar
  23. 23.
    Rayz, V.L., Boussel, L., Acevedo-Bolton, G., Martin, A.J., Young, W.L., Lawton, M.T., Higashida, R., Saloner, D.: Numerical simulations of flow in cerebral aneurysms: Comparison of CFD results and in vivo MRI measurements. ASME J. Biomech. Eng. 130, 051011 (2008)CrossRefGoogle Scholar
  24. 24.
    Rayz, V.L., Lawton, M.T., Martin, A.J., Young, W.L., Saloner, D.: Numerical simulation of pre- and postsurgical flow in a giant basilar aneurysm. ASME J. Biomech. Eng. 130, 021004 (2008)CrossRefGoogle Scholar
  25. 25.
    Imai, Y., Sato, K., Ishikawa, T., Yamaguchi, T.: Inflow into saccular cerebral aneurysms at arterial bends. Ann. Biomed. Eng. 36, 1489–1495 (2008)CrossRefGoogle Scholar
  26. 26.
    Rayz, V.L., Boussel, L., Lawton, M.T., Acevedo-Bolton, G., Ge, L., Young, W.L., Higashida, R.T., Saloner, D.: Numerical modeling of the flow in intracranial aneurysms: Prediction of regions prone to thrombus formation. Ann. Biomed. Eng. 36, 1793–1804 (2008)CrossRefGoogle Scholar
  27. 27.
    Funamoto, K., Suzuki, Y., Hayase, T., Kosugi, T., Isoda, H.: Numerical validation of mr-measurement-integrated simulation of blood flow in a cerebral aneurysm. Ann. Biomed. Eng. 37, 1105–1116 (2009)CrossRefGoogle Scholar
  28. 28.
    Blanco, P.J., Pivello, M.R., Urquiza, S.A., Feijo, R.A.: On the potentialities of 3D-1D coupled models in hemodynamics simulations. J. Biomech. 42, 919–930 (2009)CrossRefGoogle Scholar
  29. 29.
    Shimogonya, Y., Ishikawa, T., Imai, Y., Matsuki, N., Yamaguchi, T.: Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42, 550–554 (2009)CrossRefGoogle Scholar
  30. 30.
    Jiang, J., Strother, C.: Computational fluid dynamics simulations of intracranial aneurysms at varying heart rates: A ’patient-specific’ study. ASME J. Biomech. Eng. 131, 091001 (2009)CrossRefGoogle Scholar
  31. 31.
    Mantha, A.R., Benndorf, G., Hernandez, A., Metcalfe, R.W.: Stability of pulsatile blood flow at the ostium of cerebral aneurysms. J. Biomech. 42, 1081–1087 (2009)CrossRefGoogle Scholar
  32. 32.
    Valencia, A.A., Munoz, F., Araya, S.: Comparison between computational fluid dynamics, fluid-structure interaction and computational structural dynamics predictions of flow-induced wall mechanics in an anatomically realistic cerebral aneurysm model. Int. J. Comput. Fluid Dyn. 23, 649–666 (2009)zbMATHCrossRefGoogle Scholar
  33. 33.
    Robertson, A.M., Zeng, Z., Kallmes, D.F., Durika, M., Ding, Y., Lewis, D.A., Kadirvel, R.: Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature. ASME J. Biomech. Eng. 132, 091009 (2010)CrossRefGoogle Scholar
  34. 34.
    Imai, Y., Sato, K., Ishikawa, T., Yamaguchi, T.: ATP transport in saccular cerebral aneurysms at arterial bends. Ann. Biomed. Eng. 38, 927–934 (2010)CrossRefGoogle Scholar
  35. 35.
    Bazilevs, Y., Hsu, M.-C., Zhang, Y., Wang, W., Kvamsdal, T., Hentschel, S., Isaksen, J.G.: Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms. Biomech. Model. Mechanobiol. 9, 481–498 (2010)CrossRefGoogle Scholar
  36. 36.
    Raghavan, M.L., Ma, B., Fillinger, M.F.: Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann. Biomed. Eng. 34, 1414–1419 (2006)CrossRefGoogle Scholar
  37. 37.
    Ma, B., Lu, J., Harbaugh, R.E., Raghavan, M.L.: Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms. ASME J. Biomech. Eng. 129, 88–96 (2007)CrossRefGoogle Scholar
  38. 38.
    Zhou, X., Raghavan, M.L., Harbaugh, R.E., Lu, J.: Patient-specific wall stress analysis in cerebral aneurysms using inverse shell model. Ann. Biomed. Eng. 38, 478–489 (2010)CrossRefGoogle Scholar
  39. 39.
    Feng, Y., Wada, S., Tsubota, K., Yamaguchi, T.: Growth of intracranial aneurysms arising from curved vessels under the influence of elevated wall shear stress—a computer simulation study. Jpn. Soc. Mech. Eng. (JSME) Int. J. Ser. C 47, 1035–1042 (2004)Google Scholar
  40. 40.
    Wulandana, R., Robertson, A.M.: An inelastic multi-mechanism constitutive equation for cerebral arterial tissue. Biomech. Model. Mechanobiol. 4, 235–248 (2005)CrossRefGoogle Scholar
  41. 41.
    Baek, S., Rajagopal, K.R., Humphrey, J.D.: Competition between radial expansion and thickening in the enlargement of an intracranial saccular aneurysm. J. Elast. 80, 13–31 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Baek, S., Rajagopal, K.R., Humphrey, J.D.: A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128, 142–149 (2006)CrossRefGoogle Scholar
  43. 43.
    Kroon, M., Holzapfel, G.A.: A model for saccular cerebral aneurysm growth by collagen fibre remodelling. J. Theor. Biol. 247, 775–787 (2007)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Kroon, M., Holzapfel, G.A.: Modeling of saccular aneurysm growth in a human middle cerebral artery. ASME J. Biomech. Eng. 130, 051012 (2008)CrossRefGoogle Scholar
  45. 45.
    Feng, Y., Wada, S., Ishikawa, T., Tsubota, K., Yamaguchi, T.: A rule-based computational study on the early progression of intracranial aneurysms using fluid-structure interaction: Comparison between straight model and curved model. J. Biomech. Sci. Eng. 3, 124–137 (2008)CrossRefGoogle Scholar
  46. 46.
    Eriksson, T., Kroon, M., Holzapfel, G.A.: Influence of medial collagen organization and axial in situ stretch on saccular cerebral aneurysm growth. ASME J. Biomech. Eng. 131, 101010 (2009)CrossRefGoogle Scholar
  47. 47.
    Kroon, M., Holzapfel, G.A.: A theoretical model for fibroblast-controlled growth of saccular cerebral aneurysms. J. Theor. Biol. 26, 133–164 (2009)Google Scholar
  48. 48.
    Figueroa, C.A., Baek, S., Taylor, C.A., Humphrey, J.D.: A computational framework for coupled solid-fluid-growth mechanics in cardiovascular simulations. Comput. Methods Appl. Mech. Eng. 198, 3583–3602 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Shimogonya, Y., Ishikawa, T., Imai, Y., Matsuki, N., Yamaguchi, T.: A realistic simulation of saccular cerebral aneurysm formation: focussing on a novel haemodynamic index, the gradient oscillatory number. Int. J. Comput. Fluid Dyn. 23, 583–589 (2009)zbMATHCrossRefGoogle Scholar
  50. 50.
    Li, D.L., Robertson, A.M.: A structural multi-mechanism constitutive equation for cerebral arterial tissue. Int. J. Solids Struct. 46, 2920–2928 (2009)zbMATHCrossRefGoogle Scholar
  51. 51.
    Li, D.L., Robertson, A.M.: A structural multi-mechanism damage model for cerebral arterial tissue. ASME J. Biomech. Eng. 131, 101013 (2009)CrossRefGoogle Scholar
  52. 52.
    Watton, P.N., Ventikos, Y., Holzapfel, G.A.: Modelling the growth and stabilisation of cerebral aneurysms. Math. Med. Biol. 26, 133–164 (2009)zbMATHCrossRefGoogle Scholar
  53. 53.
    Watton, P.N., Ventikos, Y.: Modelling evolution of saccular cerebral aneurysms. J. Strain Anal. 44, 375–389 (2009)CrossRefGoogle Scholar
  54. 54.
    Watton, P.N., Raberger, N.B., Holzapfel, G.A., Ventikos, Y.: Coupling the hemodynamic environment to the evolution of cerebral aneurysms: Computational framework and numerical examples. ASME J. Biomech. Eng. 131, 101003 (2009)CrossRefGoogle Scholar
  55. 55.
    Schmid, H., Watton, P.N., Maurer, M.M., Wimmer, J., Winkler, P., Wang, Y.K., Roehrle, O., Itskov, M.: Impact of transmural heterogeneities on arterial adaptation: application to aneurysm formation. Biomech. Model. Mechanobiol. 9, 295–315 (2010)CrossRefGoogle Scholar
  56. 56.
    Watton, P.N., Selimovic, A., Raberger, N.B., Huang, P., Holzapfel, G.A., Ventikos, Y.: Modelling Evolution and the Evolving Mechanical Environment of Saccular Cerebral Aneurysms. Biomech. Model. Mechanobiol. 10, 109–132 (2011)CrossRefGoogle Scholar
  57. 57.
    Machyshyn, I.M., Bovendeerd, P.H.M., van de Ven, A.A.F., Rongen, P.M.J., van de Vosse, F.N.: A model for arterial adaptation combining microstructural collagen remodeling and 3D tissue growth. Biomech. Model. Mechanobiol. 9, 671–687 (2010)CrossRefGoogle Scholar
  58. 58.
    Kondo, S., Hashoimotot, N., Kikuchi, H., Hazama, F., Nagata, I., Kataoka, H.: Cerebral aneurysms arising at nonbranching sites. an experimental study. Stroke 28, 398–404 (1997)Google Scholar
  59. 59.
    Sakaki, T., Kohmura, E., Kishiguchi, T., Yuguchi, T., Yamashita, T., Hayakawa, T.: Loss and apoptosis of smooth muscle cells in intracranial aneurysms-studies with in situ DNA end labeling and antibody against single-stranded DNA. Acta Neurochirurgica 139, 469–474 (1997)CrossRefGoogle Scholar
  60. 60.
    Kondo, S., Hashoimotot, N., Kikuchi, H., Hazama, F., Nagata, I., Kataoka, H.: Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke 29, 181–188 (1998)Google Scholar
  61. 61.
    Mimata, C., Kitaoka, M., Nagahiro, S., Iyama, K., Hori, H., Yoshioka, H., Ushio, Y.: Differential distribution and expressions of collagens in the cerebral aneurysmal wall. Acta Neuropathologica 94, 197–206 (1997)CrossRefGoogle Scholar
  62. 62.
    Gaetani, P., Tartara, F., Grazioli, V., Tancioni, F., Infuso, L., Rodriguez, y., Baena, R.: Collagen cross-linkage, elastolytic and collagenolytic activities in cerebral aneurysms: a preliminary investigation. Life Sci. 63, 285–292 (1998)CrossRefGoogle Scholar
  63. 63.
    Humphrey, J.D., Canham, P.B.: Structure, mechanical properties and mechanics of intracranial saccular aneurysms. J. Elast. 61, 49–81 (2000)zbMATHCrossRefGoogle Scholar
  64. 64.
    Frosen, J., Piippo, A., Paetau, A., Kangasniemi, M., Niemela, M., Hernesniemi, J., Jaaskelelainen, J.: Remodelling of saccular cerebral artery aneurysm wall is associated with rupture. histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35, 2287–2293 (2004)CrossRefGoogle Scholar
  65. 65.
    Ahn, S., Shin, D., Tateshima, S., Tanishita, K., Vinuela, F., Sinha, S.: Fluid-induced WSS in anthropomorphic brain aneurysm models: MR phase-contrast study at 3T. J. Magn. Reson. Imaging 25, 1120–1130 (2007)CrossRefGoogle Scholar
  66. 66.
    Hoi, Y., Meng, H., Woodward, S.H., Bendok, B.R., Hamel, R.A., Guterman, L.R., Hopkins, L.N.: Effects of arterial geometry on aneurysm growth: three dimensional computational fluid dynamics study. J. Neurosurg. 101, 676–681 (2004)CrossRefGoogle Scholar
  67. 67.
    Nakatani, H., Hashimoto, N., Kang, Y., Yamazoe, N., Kikuchi, H., Yamaguchi, S., Niimi, H.: Cerebral blood flow apatterns at major vessel bifurcations and aneurysms in rats. J. Neurosurg. 74, 258–262 (1991)CrossRefGoogle Scholar
  68. 68.
    Tateshima, S., Murayama, Y., Villablanca, J.P., Morino, T., Nomura, K., Tanishita, K., Viuela, F.: In vitro measurement of fluid-induced WSS in unruptured cerebral aneurysms harboring blebs. Stroke 34, 187–192 (2003)CrossRefGoogle Scholar
  69. 69.
    Meng, H., Wang, Z., Hoi, Y., Gao, L., Metaxa, E., Swart, D.D., Kolega, J.: Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodelling resembling cerebral aneurysm initiation. Stroke 38, 1924–1931 (2007)CrossRefGoogle Scholar
  70. 70.
    DePaola, N., Gimbrone, M.A. Jr, Davies, P.F., Dewey, C.F. Jr: Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12, 1254–1257 (1992)Google Scholar
  71. 71.
    Shojima, M., Oshima, M., Takagi, K., Torii, R., Hayakawa, M., Katada, K., Morita, A., Kirino, T.: Magnitude and role of WSS on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35, 2500–2505 (2004)CrossRefGoogle Scholar
  72. 72.
    O’Connell, M.K., Murthy, S., Phan, S., Xu, C., Buchanan, J., Spilker, R., Dalman, R.L., Zarins, C.K., Denk, W., Taylor, C.A.: The three-dimensional micro—and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol. 27, 171–181 (2008)CrossRefGoogle Scholar
  73. 73.
    Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)CrossRefGoogle Scholar
  75. 75.
    Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of arteries. Proc. R. Soc. Lond. A 466, 1551–1597 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Nissen, R., Cardinale, G.J., Udenfriend, S.: Increased turnover of arterial collagen in hypertensive rats. Proc. Natl. Acad. Sci. U.S.A Med. Sci.75, 451–453 (1978)CrossRefGoogle Scholar
  77. 77.
    Alford, P.W., Humphrey, J.D., Taber, L.A.: Growth and remodeling in a thick-walled artery model: Effects of spatial variations in wall constituents. Biomech. Model. Mechanobiol. 7, 245–262 (2008)CrossRefGoogle Scholar
  78. 78.
    Humphrey, J.D.: Remodelling of a collagenous tissue at fixed lengths. J. Biomech. Eng. 121, 591–597 (1999)CrossRefGoogle Scholar
  79. 79.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland Publishing. 4th ed (1994)Google Scholar
  80. 80.
    Gleason, R.L., Taber, L.A., Humphrey, J.D.: A 2-D model of flow-induced alterations in the geometry, structure and properties of carotid arteries. J. Biomech. Eng. 126, 371–381 (2004)CrossRefGoogle Scholar
  81. 81.
    Gleason, R.L., Humphrey, J.D.: A mixture model of arterial growth and remodeling in hypertension: Altered muscle tone and tissue turnover. J. Vasc. Res. 41, 352–363 (2004)CrossRefGoogle Scholar
  82. 82.
    Gleason, R.L., Humphrey, J.D.: Effects of a sustained extension on arterial growth and remodeling: a theoretical study. J. Biomech. Eng. 38, 1255–1261 (2007)Google Scholar
  83. 83.
    Gleason, R.L., Humphrey, J.D.: A 2d constrained mixture model for arterial adaptations to large changes in flow, pressureand axial stretch. Math. Med. Biol. 22, 347–369 (2005)zbMATHCrossRefGoogle Scholar
  84. 84.
    Gleason, R.L., Wilson, E., Humphrey, J.D.: Biaxial biomechanical adaptations of mouse carotid arteries cultured at altered axial extension. J. Biomech. Eng. 40, 766–776 (2007)CrossRefGoogle Scholar
  85. 85.
    Valentín, A., Cardamone, L., Baek, S., Humphrey, J.D.: Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6, 293–306 (2009)CrossRefGoogle Scholar
  86. 86.
    Valentín, A., Humphrey, J.D.: Modeling effects of axial extension on arterial growth and remodeling. Med. Biol. Eng. Comput. 47, 979–987 (2009)CrossRefGoogle Scholar
  87. 87.
    Valentín, A., Humphrey, J.D.: Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Philos. Transact. R. Soc. Lond. A 367, 3585–3606 (2009)zbMATHCrossRefGoogle Scholar
  88. 88.
    Valentín, A., Humphrey, J.D.: Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling. J. Biomech. Eng. 10, 101006 (2009)CrossRefGoogle Scholar
  89. 89.
    Humphrey, J.D., Taylor, C.A.: Intracranial and abdominal aortic aneurysms: Similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10, 221–246 (2008)CrossRefGoogle Scholar
  90. 90.
    Watton, P.N., Hill, N.A., Heil, M.: A mathematical model for the growth of the abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 3, 98–113 (2004)CrossRefGoogle Scholar
  91. 91.
    Schmid, H., Watton, P.N., McCormick, M., Lanir, Y., Ho, H., Lloyd, C., Hunter, P., Ehret, A., Itskov, M.: Computational modeling of cerebral aneurysm formation-framework formodeling the interaction between fluid dynamics, signal transduction pathways and arterial wall mechanics. In: Sloten, J.V., Verdonck, P., Nyssen, M., Haueisen, J., (eds.) vol. 22, pp. 1894–1898. ECIFMBE 2008, IFMBE Proceedings (2008)Google Scholar
  92. 92.
    Watton, P.N., Hill, N.A.: Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 8, 25–42 (2009)CrossRefGoogle Scholar
  93. 93.
    Selimovic, A., Villa-Uriol, M.-C., Holzapfel, G.A., Ventikos, Y., Watton, P.N. (2010) A computational framework to explore the role of the pulsatile haemodynamic environment on the development of cerebral aneurysms for patient-specific arterial geometries. In: Lim, C.T., Goh, J.C.H. (eds.) 6th World Congress of Biomechanics (WCB 2010), IFMBE Proceedings, vol. 31, pp. 759–762. Springer (2010)Google Scholar
  94. 94.
    Heil, M.: The stability of cylindrical shells conveying viscous flow. J. Fluids Struct. 10, 173–196 (1996)CrossRefGoogle Scholar
  95. 95.
    Watton, P.N., Ventikos, Y., Holzapfel, G.A.: Modelling the mechanical response of elastin for arterial tissue. J. Biomech. 42, 1320–1325 (2009)CrossRefGoogle Scholar
  96. 96.
    Hernandez, M., Frangi, A.F.: Non-parametric geodesic active regions: Method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA. Med. Image Anal. 11, 224–241 (2007)CrossRefGoogle Scholar
  97. 97.
    Mellado, X., Larrabide, I., Hernandez, M., Frangi, A.F.: Flux driven medial curve extraction. Insight J. http://hdl.handle.net/1926/560 (2007)
  98. 98.
    Bogunović, H., Radaelli, A., de Craene, M., Delgado, D., Frangi, A.F.: Image intensity standardization in 3D rotational angiography and its application to vascular segmentation vol. 6914. Society of Photo-Optical Instrumentation Engineers Bellingham, WA San Diego CA USA (2008)Google Scholar
  99. 99.
    Patakar, H.S.: Numerical Heat Transfer and Fluid Flow (Hemisphere Series on Computational Methods in Mechanics and Thermal Science). Taylor & Francis, London (1980)Google Scholar
  100. 100.
    Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics 3rd ed. Springer-Verlag, Heidelberg (2002)CrossRefGoogle Scholar
  101. 101.
    Hutchinson, B.R., Raithby, G.D.: A multigrid method based on the additive correction strategy. Numer. Transf. 9, 511–537 (1986)Google Scholar
  102. 102.
    Cebral, J.R., Castro, M.A., Appanaboyina, S., Putman, C.M., Millan, D., Frangi, A.F.: Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Transact. Med. Imaging 24, 457–467 (2005)CrossRefGoogle Scholar
  103. 103.
    Fisher, C., Rossmann, J.S.: Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms. ASME J. Biomech. Eng. 131, 091004 (2009)CrossRefGoogle Scholar
  104. 104.
    Oshima, M., Torii, R., Kobayashia, T., Taniguchic, N., Takagid, K.: Finite element simulation of blood flow in the cerebral artery. Comput. Methods Appl. Mech. Eng. 191, 661–671 (2001)zbMATHCrossRefGoogle Scholar
  105. 105.
    Myers, J.G., Moore, J.A., Ojha, M., Johnston, K.W., Ethier, C.R.: Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29, 109–120 (2001)CrossRefGoogle Scholar
  106. 106.
    Mantha, A., Karmonik, C., Benndorf, G., Strother, C., Metcalfe, R.: Hemodynamics in a cerebral artery before and after the formation of an aneurysm. Am. J. Neuroradiol. 27, 1113–1118 (2006)Google Scholar
  107. 107.
    Wang, J.H.C., Thampaty, B.P.: An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol. 5, 1–16 (2006)CrossRefGoogle Scholar
  108. 108.
    Gupta, V., Grande-Allen, K.J.: Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc. Res. 72, 375–383 (2006)CrossRefGoogle Scholar
  109. 109.
    Chiquet, M., Renedo, A.S., Huber, F., Flück, M.: How do fibroblasts translate mechanical signals into changes in extracellular matrix production?. Matrix Biol. 22, 73–80 (2003)CrossRefGoogle Scholar
  110. 110.
    Sotoudeh, M., Jalali, S., Usami, S., Shyy, J.-Y., Chien, S.: A strain device imposing dynamic and uniform equi-biaxial strain to cultured cells. Ann. Biomed. Eng. 26, 181–189 (1998)CrossRefGoogle Scholar
  111. 111.
    Shin, H.Y., Gerritsen, M.E., Bizios, R.: Regulation of endothelial cell proliferation and apoptosis by cyclic pressure. Ann. Biomed. Eng. 30, 297–304 (2002)CrossRefGoogle Scholar
  112. 112.
    Asanuma, K., Magid, R., Johnson, C., Nerem, R.M., Galis, Z.S.: Uniaxial strain regulates matrix-degrading enzymes produced by human vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 284, H1778–H1784 (2003)Google Scholar
  113. 113.
    Lee, R.T., Yamamoto, C., Feng, Y., Potter-Perigo, S., Briggs, W.H., Landschulz, K.T., Turi, T.G., Thompson, J.F., Libby, P., Wight, T.N.: Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J. Biochem. 276, 13847–13851 (2001)Google Scholar
  114. 114.
    Hill, M.A., Zou, H., Potocnik, S.J., Meininger, G.A., Davis, M.J.: Signal transduction in smooth muscle invited review: Arteriolar smooth muscle mechanotransduction: Ca2+ signalling pathways underlying myogenic reactivity. J. Appl. Physiol. 91, 973–983 (2001)Google Scholar
  115. 115.
    Williams, B.: Mechanical influences on vascular smooth muscle function. J. Hypertens. 16, 1921–1929 (1998)CrossRefGoogle Scholar
  116. 116.
    Kim, Y.S., Galis, Z.S., Rachev, A., Han, H.C., Vito, R.P.: Matrix metalloproteinase-2 and −9 are associated with high stresses predicted using a nonlinear heterogeneous model of arteries. ASME J. Biomech. Eng. 131, 011009 (2009)CrossRefGoogle Scholar
  117. 117.
    Cummins, P.M., von Offenberg Sweeney, N., Killeen, M.T., Birney, Y.A., Redmond, E.M., Cahill, P.A.: Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am. J. Physiol. Heart Circ. Physiol. 292, H28–H42 (2007)CrossRefGoogle Scholar
  118. 118.
    Chien, S.: Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292, H1209–H1224 (2007)CrossRefGoogle Scholar
  119. 119.
    Davies, P.F.: Flow mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paul N. Watton
    • 1
    Email author
  • Yiannis Ventikos
    • 1
  • Gerhard A. Holzapfel
    • 2
    • 3
  1. 1.Department of Engineering Science, Institute of Biomedical Engineering University of OxfordOxfordUK
  2. 2.Center of Biomedical Engineering, Institute of BiomechanicsGraz University of TechnologyGrazAustria
  3. 3.Department of Solid Mechanics, School of Engineering SciencesRoyal Institute of TechnologyStockholmSweden

Personalised recommendations