Computer-Aided Diagnosis of Abdominal Aortic Aneurysms

  • Barry J. Doyle
  • Timothy M. McGloughlin
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 7)


Computer-aided diagnosis (CAD) systems have been used in several areas of medicine for the last number of years. A typical CAD system interprets medical images and provides guidance for the clinician. The concept of CAD in the assessment of abdominal aortic aneurysm (AAA) has been around for several years, however, the technique is gaining momentum as of late. Computer modeling of AAAs is becoming more prevalent with several novel approaches of CAD reported over the past number of years. CAD is possible through computer-aided detection (CADe) and computer-aided quantification (CADq) techniques that work together to return usable quantities aimed at helping identify AAAs that may be at risk of rupture. This chapter examines some recent developments within the area of CAD for AAAs, in particular the use of peak wall stress, and also asymmetry and the finite element analysis rupture index. All three tools provide additional data to the clinician through the CAD system and help complement the use of maximum diameter in identifying high-risk AAAs.


Abdominal Aortic Aneurysm Wall Stress Rupture Risk Wall Strength Abdominal Aortic Aneurysm Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bluestein, D., Dumont, K., De Beule, M., Ricotta, J., Impellizzeri, P., Verhegghe, B., Verdonck, P.: Intraluminal thrombus and risk of rupture in patient-specific abdominal aortic —FSI modeling. Comput. Methods Biomech Biomed Eng. 12, 73–81 (2009)CrossRefGoogle Scholar
  2. 2.
    Breeuwer, M., de Putter, S., Kose, U., Speelman, L., Visser, K., Gerritsen, F., Hoogeveen, R., Krams, R., van den Bosch, H., Buth, J., Gunther, T., Wolters, B., van Dam, E., van de Vosse, F.: Towards patient-specific risk assessment of abdominal aortic aneurysm. Med. Biol. Eng. Comput. 46, 1085–1095 (2008)CrossRefGoogle Scholar
  3. 3.
    Conway, K.P, Byrne, J., Townsend, M., Lane, IF.: Prognosis of patients turned down for conventional abdominal aortic aneurysm repair in the endovascular and sonographic era: Szilagyi revisted? J. Vasc. Surg. 33, 752–757 (2001)CrossRefGoogle Scholar
  4. 4.
    Cronenwett, J.L., Murphy, T.F., Zelenock, G.B., Whitehouse, Jr W.M., Lindenauer S.M., Graham, L.M., Quint, L.E., Silver T.M., Stanley, J.C.: Actuarial analysis of variables associated with rupture of small abdominal aortic aneurysms. Surgery 98, 472–483 (1985) Google Scholar
  5. 5.
    Darling, R.C., Messina, C.R., Brewster D.C., Ottinger L.W.: Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation 56, 161–164 (1977)Google Scholar
  6. 6.
    Di Martino, E.S., Bohra, A., Vande Geest, J.P., Gupta, N., Makaroun M.S., Vorp, D.A.: Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43, 570–576 (2006)CrossRefGoogle Scholar
  7. 7.
    Doyle, B.J., Callanan, A., McGloughlin, T.M.: A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms. Biomed. Eng. Online 6, 38 (2007)CrossRefGoogle Scholar
  8. 8.
    Doyle, B.J., Morris, L.G., Callanan, A., Kelly, P., Vorp, D.A., McGloughlin, T.M.: 3D reconstruction and manufacture of real abdominal aortic aneurysms: From CT scan to silicone model. J. Biomech. Eng. 130, 034501 (2008)CrossRefGoogle Scholar
  9. 9.
    Doyle, B.J., Callanan, A., Burke, P.E., Grace, P.A., Walsh, M.T., Vorp, D.A., McGloughlin, T.M.: Vessel asymmetry as an additional tool in the assessment of abdominal aortic aneurysms. J. Vasc. Surg. 49, 443–454 (2009)CrossRefGoogle Scholar
  10. 10.
    Doyle, B.J., Callanan, A., Walsh M.T., Grace P.A., McGloughlin, T.M.: A finite element analysis rupture index (FEARI) as an additional tool for abdominal aortic aneurysm rupture prediction. Vasc. Dis. Prev. 6, 114–121 (2009)CrossRefGoogle Scholar
  11. 11.
    Doyle, B.J., Grace, P.A., Kavanagh, E.G., Burke, P.E., Wallis, F., Walsh, M.T., McGloughlin, T.M.: Improved assessment and treatment of abdominal aortic aneurysms: The use of 3D reconstructions as a surgical guidance tool in endovascular repair. Ir. J. Med. Sci. 178, 321–328 (2009)CrossRefGoogle Scholar
  12. 12.
    Doyle, B.J., Corbett, T.J., Callanan, A., Walsh, M.T., Vorp, D.A., McGloughlin, T.M.: An experimental and numerical comparison of the rupture locations of an abdominal aortic aneurysm. J. Endovasc. Ther. 16, 322–335 (2009)CrossRefGoogle Scholar
  13. 13.
    Doyle, B.J., Coyle, P., Kavanagh, E.G., Grace, P.A., McGloughlin, T.M.: A finite element analysis rupture index (FEARI) assessment of electively repaired and symptomatic/ruptured abdominal aortic aneurysms. IFMBE Proc. 31, 883–886 (2010) CrossRefGoogle Scholar
  14. 14.
    Doyle, B.J., Cloonan, A.J., Walsh, M.T., Vorp, D.A., McGloughlin, T.M.: Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J. Biomech. 43, 1408–1416 (2010)CrossRefGoogle Scholar
  15. 15.
    Elger, D.F., Blackletter, D.M., Budwig, R.S., Johansen, K.H.: The influence of shape on the stresses in model abdominal aortic aneurysms. J. Biomech. Eng. 118, 326–332 (1996)CrossRefGoogle Scholar
  16. 16.
    Ernst, C.B.: Abdominal aortic aneurysm. N. Eng. J. Med. 328, 1167–1172 (1993)CrossRefGoogle Scholar
  17. 17.
    Fenton, J.J., Taplin, S.H., Carney, P.A., Abraham, L., Sickles, E.A., D’Orsi, C., Berns, E.A., Cutter, G., Hendrick, E., Barlow, W.E., Elmore, J.G.: Influence of computer-aided detection on performance of screening mammography. N. Eng. J. Med. 356, 1399–1409 (2007)CrossRefGoogle Scholar
  18. 18.
    Fillinger, M.F., Raghavan, M.L., Marra, S.P., Cronenwett, J.L., Kennedy F.E.: In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36, 589–597 (2002)CrossRefGoogle Scholar
  19. 19.
    Fillinger, M.F., Marra, S.P., Raghavan, M.L., Kennedy, F.E.: Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37, 724–732 (2003)CrossRefGoogle Scholar
  20. 20.
    Gasser, T.C., Auer, M., Labruto, F., Swedenborg, J., Roy, J.: Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. (2010). doi: 10.1016/j.ejvs.2010.04.003
  21. 21.
    Giannoglu, G., Giannakoulas, G., Soulis, J., Chatzizisis, Y., Perdikides, T., Melas, N., Parcharidis, G., Louridas, G.: Predicting the risk of rupture of abdominal aortic aneurysms by utilizing various geometrical parameters: revisiting the diameter criterion. Angiology 57, 487–494 (2006)CrossRefGoogle Scholar
  22. 22.
    Glimaker, H., Holmberg, L., Elvin, A., Nybacka, O., Almgren. B., Bjorck, C.G., Eriksson, I.: Natural history of patients with abdominal aortic aneurysm. Eur. J. Vasc. Surg. 5, 125–130 (1991)CrossRefGoogle Scholar
  23. 23.
    Hirose, Y., Takamiya, M.: Growth curve of ruptured aortic aneurysm. J. Cardiovasc. Surg. 39, 9–13 (1998)Google Scholar
  24. 24.
    Inzoli, F., Boschetti, F., Zappa, M., Longo, T., Fumero, R.: Biomechanical factors in abdominal aortic aneurysm rupture. Eur. J. Vasc. Surg. 7, 667–674 (1993)CrossRefGoogle Scholar
  25. 25.
    Kleinstreuer, C., Li, Z.: Analysis and computer program for rupture risk prediction of abdominal aortic aneurysms. Biomed. Eng. Online 5, 19 (2006)CrossRefGoogle Scholar
  26. 26.
    Lederle, F.A., Johnson, G.R., Wilson, S.E., Ballard, D.J., Jordan Jr ,W.D., Blebea, J., Littooy, F.N., Freischlag, J.A., Bandyk, D., Rapp, J.H., Salam, A.A.: Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA 287, 2968–2972 (2002)CrossRefGoogle Scholar
  27. 27.
    Leung, J.H., Wright, A.R., Cheshire, N., Crane, J., Thom, S.A., Hughes, A.D., Xu Y Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed. Eng. Online 5, 33 (2006)CrossRefGoogle Scholar
  28. 28.
    Li, Z.Y., U-King-Im, J., Tang, T.Y., Soh, E., See, T.C., Gillard, J.H.: Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J. Vasc. Surg. 47, 928–935 (2008)CrossRefGoogle Scholar
  29. 29.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Comp. Graphics 21, 163–169 (1987)CrossRefGoogle Scholar
  30. 30.
    Maier, A., Gee, M.W., Reeps, C., Pongratz, J., Eckstein, H.H., Wall, W.A.: A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38, 3124–3134 (2010)CrossRefGoogle Scholar
  31. 31.
    Maier, A., Gee, M.W., Reeps, C., Eckstein, H.H., Wall, W.A.: Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech. Model. Mechanobiol. 9, 511–521 (2010)CrossRefGoogle Scholar
  32. 32.
    Martufi, G., DiMartino, E.S., Amon, C.H., Muluk, S.C., Finol, E.A.: Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 131, 061015 (2009)CrossRefGoogle Scholar
  33. 33.
    McGloughlin, T.M., Doyle, B.J.: New approaches to abdominal aortic aneurysm rupture risk assessment: engineering insights with clinical gain. Arterioscler. Thromb. Vasc. Biol. 30, 1687–1694 (2010)CrossRefGoogle Scholar
  34. 34.
    Meyer, C.A., Guivier-Curien, C., Moore, J.E.: Trans-thrombus blood pressure effects in abdominal aortic aneurysms. J. Biomech. Eng. 132, 071005 (2010)CrossRefGoogle Scholar
  35. 35.
    Moore, J.A., Steinman, D.A., Ethier, C.R.: Computational blood flow modeling: errors associated with reconstructing finite element models from magnetic resonance images. J. Biomech. 31, 179–184 (1998)CrossRefGoogle Scholar
  36. 36.
    Morris, L., Delassus, P., Callanan, A., Walsh, M., Wallis, F., Grace, P., McGloughlin, T.: 3D numerical simulation of blood flow through models of the human aorta. J. Biomech. Eng. 127, 767–775 (2005)CrossRefGoogle Scholar
  37. 37.
    Mower, W.R., Baraff, L.J., Sneyd, J.: Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture. J. Surg. Res. 55, 155–161 (1993)CrossRefGoogle Scholar
  38. 38.
    National Health Service. National Screening Program for Abdominal Aortic Aneurysm [online] available: (2009). Accessed 9 Feb 2009
  39. 39.
    Neal, M.L., Kerckhoffs, R.: Current progress in patient-specific modeling. Brief Bioinform. 11, 111–126 (2009)CrossRefGoogle Scholar
  40. 40.
    Nicholls, S.C., Gardner, J.B., Meissner, M.H., Johansen, H.K: Rupture in small abdominal aortic aneurysms. J. Vasc. Surg. 28, 884–888 (1998)CrossRefGoogle Scholar
  41. 41.
    Raghavan, M.L., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Vasc. Surg. 33, 475–482 (2000)Google Scholar
  42. 42.
    Raghavan, M.L., Webster, M.W., Vorp, D.A.: Ex vivo biomechanical behaviour of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24, 573–582 (1996)CrossRefGoogle Scholar
  43. 43.
    Raghavan, M.L., Vorp, D.A., Federle, M.P., Makaroun, M.S., Webster, M.W.: Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J. Vasc. Surg. 31, 760–769 (2000)CrossRefGoogle Scholar
  44. 44.
    Raghavan, M.L., Kratzberg, J., de Tolosa, E.M.C., Hanaoka, M.M., Walter, P., da Silva, E.S.: Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39, 3010–3016 (2006)CrossRefGoogle Scholar
  45. 45.
    Sacks, M.S, Vorp, D.A, Raghavan, M.L., Federle, M.P, Webster, M.W.: In vivo three-dimensional surface geometry of abdominal aortic aneurysms. Ann. Biomed. Eng. 27, 469–479 (1999)CrossRefGoogle Scholar
  46. 46.
    Sayers, R.D.: Aortic aneurysms, inflammatory pathways and nitric oxide. Ann. Royal Col. Surg. Eng. 84, 239–246 (2002)CrossRefGoogle Scholar
  47. 47.
    Schurink, G.W.H., van Baalen, J.M., Visser, M.J.T., van Bockel, J.H.: Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J. Vasc. Surg. 31, 501–506 (2000)CrossRefGoogle Scholar
  48. 48.
    Scotti, C.M., Shkolnik, A.D., Muluk, S.C., Finol, E.: Fluid-structure interaction in abdominal aortic aneurysms: effect of asymmetry and wall thickness. Biomed. Eng. Online 4, 64 (2005)CrossRefGoogle Scholar
  49. 49.
    Speelman, L., Bohra, A, Bosboom, E.M.H., Schurink, G.W.H., van de Vosse, F.N., Makaroun, M.S., Vorp, D.A.: Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J. Biomech. Eng. 129, 1–5 (2007)CrossRefGoogle Scholar
  50. 50.
    Stenbaek, J., Kalin, B., Swedenborg, J.: Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 20, 466–469 (2000)CrossRefGoogle Scholar
  51. 51.
    Stringfellow, M.M., Lawrence, P.F., Stringfellow, R.G.: The influence of aorta geometry upon stress in the aneurysm wall. J. Surg. Res. 42, 425–433 (1987)CrossRefGoogle Scholar
  52. 52.
    Thubrikar, M.J., Labrosse, M., Robicsek, F., Al-Soudi, J., Fowler, B.: Mechanical properties of abdominal aortic aneurysm wall. J. Med. Eng. Tech. 25:133–142 (2001) CrossRefGoogle Scholar
  53. 53.
    Thubrikar M.J, Al-Soudi, J., Robicsek, F.: Wall stress studies of abdominal aortic aneurysm in a clinical model. Ann. Vasc. Surg. 15, 355–366 (2001)CrossRefGoogle Scholar
  54. 54.
    Truijers M., Pol, J.A., SchultzeKool, L.J., van Sterkenburg, S.M., Fillinger, M.F., Blankensteijn, J.D.: Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 33, 401–407 (2007)CrossRefGoogle Scholar
  55. 55.
    United States Preventative Services Task Force. Screening for abdominal aortic aneurysm: recommendation statement. Ann. Int. Med. 142, 198–202 (2005)Google Scholar
  56. 56.
    Vallabhaneni, S.R., Gilling-Smith, G.L., Brennan, J.A., Heyes, R.R., Hunt, J.A., How, T.V., Harris, P.L.: Can intrasac pressure monitoring reliably predict failure of endovascular aneurysm repair? J. Endovasc. Ther. 10, 524–530 (2003)CrossRefGoogle Scholar
  57. 57.
    Vande Geest, J.P., Di Martino, E.S., Bohra, A., Makaroun, M.S., Vorp, D.A.: A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment. Ann. NY Acad. Sci. 1085, 11–21 (2006)CrossRefGoogle Scholar
  58. 58.
    Vande Geest, J.P., Wang, D.H.J., Wisniewski, S.R., Makaroun, M.S., Vorp, D.A.: Towards a non-invasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34, 1098–1106 (2006)CrossRefGoogle Scholar
  59. 59.
    Vande Geest, J.P., Sacks, M.S, Vorp, D.A.: The effects of aneurysm on the biaxial mechanical behaviour of human abdominal aorta. J. Biomech. 39, 1324–1334 (2006)CrossRefGoogle Scholar
  60. 60.
    Venkatasubramaniam, A.K., Fagan, M.J., Mehta, T., Mylankal K.J., Ray, B., Kuhan, G., Chetter, I.C., McCollum, P.T.: A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28, 168–176 (2004)Google Scholar
  61. 61.
    Volokh, K.Y., Vorp, D.A.: A model of growth and rupture of abdominal aortic aneurysm. J. Biomech. 41, 1015–1021 (2008)CrossRefGoogle Scholar
  62. 62.
    Vorp, DA.: Biomechanics of abdominal aortic aneurysm. J. Biomech. 40, 1887–1902 (2008)CrossRefGoogle Scholar
  63. 63.
    Vorp, D.A., Raghavan, M.L., Webster, M.W.: Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J. Vasc. Surg. 27, 632–639 (1998)CrossRefGoogle Scholar
  64. 64.
    Wang, D.H.J., Makaroun, M.S., Webster, M.W., Vorp, D.A.: Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123, 536–539 (2001)CrossRefGoogle Scholar
  65. 65.
    Wang, D.H.J., Makaroun, M.S., Webster, M.W., Vorp, D.A.: Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36, 598–604 (2002)CrossRefGoogle Scholar
  66. 66.
    Watton, P., Hill, N., Heil, M.: A mathematical model for the growth of the abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 3(2), 98–113 (2004)CrossRefGoogle Scholar
  67. 67.
    Wilarusmee, C., Suvikrom, J., Suthakorn, J., Lertsithichai, P., Sitthiseriprapip, K., Proprom, N., Kittur, D.S.: Three-dimensional aortic aneurysm model and endovascular repair: an educational tool for surgical trainees. Int. J. Angiol. 17, 129–133 (2008)Google Scholar
  68. 68.
    Xiong, J., Wang, S.M., Zhou, W., Wu, J.G.: Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta. J. Vasc. Surg. 48, 189–195 (2008)CrossRefGoogle Scholar
  69. 69.
    Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The finite element method: its basis and fundamentals, 6th edn. Elsevier Butterworth-Heinemann, UK (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Mechanical, Aeronautical and Biomedical Engineering, Materials and Surface Science Institute, Centre for Applied Biomedical Engineering Research (CABER)University of LimerickLimerickIreland

Personalised recommendations