Modeling of the Brain for Injury Prevention

  • King H. Yang
  • Haojie Mao
  • Christina Wagner
  • Feng Zhu
  • Clifford C. Chou
  • Albert I. King
Chapter

Abstract

From an ethical point of view, it is extremely difficult to propose a well-controlled human subject study aimed at understanding brain injury mechanisms and establishing the associated tolerance values. For this reason, many numerical models of the human and animal head or brain have been developed over the past several decades in an attempt to obtain in-depth insights into brain injury biomechanics, minimizing the need for human subject research. This chapter highlights and contrasts the essence of human and animal head numerical models developed for studying blunt impact and blast-induced brain injuries. Even with the vast amount of literature produced by these investigations and studies, the precise mechanisms of brain injury have not yet been fully established to date. Through this review, it is clear that a lot of information can be garnered by numerical brain modeling but few efforts have been devoted so far in using these numerical models to provide guidelines in the discovery of brain injury mechanisms. Based on the brain models reported in the current literature, there are some inherent deficiencies. However, with further revisions and improvements to the currently available models, as opposed to developing new models from scratch, these issues can be overcome, and the state of the art can be advanced. More research effort into brain injury mechanisms, especially under in vivo conditions, is needed for computational model improvements so that the injury mechanisms can be thoroughly understood and effective countermeasures for protecting human from traumatic brain injury can be developed.

References

  1. 1.
    Abel, J.M., Gennarelli, T.A., Segawa, H.: Incidence and severity of cerebral concussion in the rhesus monkey following sagittal plane angular acceleration. In: 22nd Stapp Car Crash Conference. Ann Arbor, Michigan, USA (1978)Google Scholar
  2. 2.
    Al-Bsharat, A., Hardy, W.N., Yang, K.H., Khalil, T.B., King, A.I., Tashman, S.: Brain/skull relative displacement magnitude due to blunt head impact: new experimental data and model. In: 43rd Stapp Car Crash Conference, SAE Paper No. 99SC22. Society of Automotive Engineers, Warrendale (1999)Google Scholar
  3. 3.
    Alem, N.M., Simulation of head injury due to combined rotation and translation of the brain. In: Proceedings of the 18th Stapp Car Crash Conference, Ann Arbor, Michigan, USA, SAE 741192 (1974)Google Scholar
  4. 4.
    Allsop, D.L., Warner, C.Y., Wille, M.G., Scheider, D.C., Nahum, A.M.: Facial impact response—a comparison of the hybrid iii dummy and human cadaver. In: Proceedings of the 32nd Stapp Car Crash Conference, SAE Paper No. 881719. Society of Automotive Engineers, Warrendale (1988)Google Scholar
  5. 5.
    Anderson, R.W.: A study on the biomechanics of axonal injury. In: Road Accident Research Unit and the Department of Mechanical Engineering. The University of Adelaide (2000)Google Scholar
  6. 6.
    Bandak, F.A., Eppinger, R.H.: A three-dimensional finite element analysis of the human brain under combined rotational and translational accelerations. In: 38th Stapp Car Crash Conference, SAE 942215. Ft. Lauderdale, Florida, USA (1994)Google Scholar
  7. 7.
    Bandak, F.A.: On the mechanics of impact neurotrauma: a review and critical synthesis. J. Neurotrauma 12(4), 635–649 (1995)CrossRefGoogle Scholar
  8. 8.
    Bandak, F.A., Vander Vorst, M.J., Stuhmiller, L.M., Mlakar, P.F., Chilton, W.E., Stuhmiller, J.H.: An imaging-based computational and experimental study of skull fracture: finite element model development. J. Neurotrauma 12(4), 679–688 (1995)CrossRefGoogle Scholar
  9. 9.
    Bilston, L.E., Liu, Z., Phan-Thien, N.: Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38(4), 335–345 (2001)Google Scholar
  10. 10.
    Brands, D.W.A., Bovendeerd, P.H.M., Wismans, J.S.H.M.: On the potential importance of non-linear viscoelastic material modelling for numerical prediction of brain tissue response: test and application. In: Proceedings of the 46th Stapp Car Crash Conference, pp. 103–121 (2002)Google Scholar
  11. 11.
    Chafi, M.S., Karami, G., Ziejewski, M.: An assessment of primary blast injury in human brains—a numerical simulation. In: Proceedings of the 2007 ASME Summer Bioengineering Conference, pp. 349–350 (2007a)Google Scholar
  12. 12.
    Chafi, M.S., Karami, G., Ziejewski, M.: Simulation of blast–head interactions to study traumatic brain injury. In: Proceedings of the 2007 International Mechanical Engineering Congress and Exposition, pp. 211–220 (2007b)Google Scholar
  13. 13.
    Chafi, M.S., Karami, G., Ziejewski, M.: Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann Biomed Eng. Epub (2009)Google Scholar
  14. 14.
    Chakrabarty, S.P., Hanson, F.B.: Distributed parameters deterministic model for treatment of brain tumors using galerkin finite element method. Math. Biosci. 219(2), 129–141 (2009)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chan, H.S.: Mathematical model for closed head impact. In: Proceedings of the 18th Stapp Car Crash Conference, SAE 741191. Ann Arbor, Michigan, USA (1974)Google Scholar
  16. 16.
    Chan, H.S., Liu, Y.K.: The symmetric response of a fluid-filled spherical shell—a mathematical simulation of a glancing blow to the head. J. Biomech. 7, 43–59 (1974)CrossRefGoogle Scholar
  17. 17.
    Chen, M., Mogul, D.J.: A structurally detailed finite element human head model for simulation of transcranial magnetic stimulation. J. Neurosci. Methods 179(1), 111–120 (2009)CrossRefGoogle Scholar
  18. 18.
    Chen, S., Pickard, J.D., Harris, N.G.: Time course of cellular pathology after controlled cortical impact injury. Exp. Neurol. 182(1), 87–102 (2003)CrossRefGoogle Scholar
  19. 19.
    Chen, Y.C., Smith, D.H., Meaney, D.F.: In vitro approaches for studying blast-induced traumatic brain injury. J. Neurotrauma 26(6), 861–876 (2009)CrossRefGoogle Scholar
  20. 20.
    Chu, C.S., Lin, M.S., Huang, H.M., Lee, M.C.: Finite element analysis of cerebral contusion. J. Biomech. 27(2), 187–194 (1994)CrossRefGoogle Scholar
  21. 21.
    Claessens, M., Sauren, F., Wismans, J.: Modeling of the human head under impact conditions: a parametric study. In: Proceedings of the 41st Annual Stapp Car Crash Conference, SAE 973338. Lake Buena Vista, Florida, USA (1997)Google Scholar
  22. 22.
    Cloots, R.J., Gervaise, H.M., van Dommelen, J.A., Geers, M.G.: Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex. Ann. Biomed. Eng. 36(7), 1203–1215 (2008)CrossRefGoogle Scholar
  23. 23.
    Coats, B., Margulies, S.S., Ji, S.: Parametric study of head impact in the infant. Stapp. Car Crash J. 51, 1–15 (2007)Google Scholar
  24. 24.
    Couper, Z., Albermani, F.: Infant brain subjected to oscillatory loading: material differentiation, properties, and interface conditions. Biomech. Model. Mechanobiol. 7(2), 105–125 (2008)CrossRefGoogle Scholar
  25. 25.
    Desantis-Klinich, K.D., Hulbert, G., Schneider, L.W.: Estimating infant head injury criteria and impact response using crash reconstruction and finite element modeling. Stapp Car Crash J. 46, 165–194 (2002)Google Scholar
  26. 26.
    Dimasi, F., Eppinger, R.H., Gabler, H.C., Marcus, J.: Simulated head impacts with upper interior structures using rigid and anatomic brain models. In: R. Strombotne (ed.) Auto and Traffic Safety, vol. 1, no. 1. National Highway Traffic Safety Publication (1991)Google Scholar
  27. 27.
    DiMasi, F.P., Eppinger, R.H., Bandak, F.A.: Computational analysis of head impact response under car crash loadings. In: Proceedings of the 39th Stapp Car Crash Conference, SAE 952718, San Diego, CA, USA (1995)Google Scholar
  28. 28.
    Engin, A.E., Liu, Y.K.: Axisymmetric response of a fluid-filled spherical shell in free vibrations. J. Biomech. 3(1), 11–22 (1970)CrossRefGoogle Scholar
  29. 29.
    Eppinger, R., Kleinberger, M., Morgan, R., Khaewpong, N., Bandak, F.A., Haffner, M.: Advanced injury criteria and crash test evaluation techniques. In: Proceedings of the NHTSA 14th International Technical Conference on Experimental Safety Vehicles, Paper no. 90-S1-O-11. Munich, Germany (1994)Google Scholar
  30. 30.
    Fan, W.R.S.: Internal head injury assessment. In: Proceedings of the 15th Stapp Car Crash Conference, SAE 710870. San Diego, CA, USA (1971)Google Scholar
  31. 31.
    Finkel, M.F.: The neurological consequences of explosives. J. Neurol. Sci. 249, 63–67 (2006)CrossRefGoogle Scholar
  32. 32.
    Finkelstein, E., Corso, P., Miller, T., and Associates.: The Incidence and Economic Burden of Injuries in the United States. Oxford University Press, New York (2006)Google Scholar
  33. 33.
    Fitch, M.T., Doller, C., Combs, C.K., Landreth, G.E., Silver, J.: Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after cns trauma. J. Neurosci. 19(19), 8182–8198 (1999)Google Scholar
  34. 34.
    Franklyn, M., Fildes, B., Zhang, L., Yang, K., Sparke, L.: Analysis of finite element models for head injury investigation: reconstruction of four real-world impacts. Stapp Car Crash J. 50 (2005)Google Scholar
  35. 35.
    Franklyn, M., Peiris, S., Huber, C., Yang, K.H.: Pediatric material properties: a review of human child and animal surrogates. Crit. Rev. Biomed. Eng. 35(3–4), 197–342 (2007)Google Scholar
  36. 36.
    Galford, J.E., McElhaney, J.H.: A viscoelastic study of scalp, brain, and dura. J. Biomech. 3(2), 211–221 (1970)CrossRefGoogle Scholar
  37. 37.
    Gao, C., Tay, H., Nowinski, F., Wieslaw, L.: A finite element method based deformable brain atlas suited for surgery simulation. In: Conf Proc IEEE Eng Med Biol Soc. vol. 4, pp. 4337–4340 (2005)Google Scholar
  38. 38.
    Gao, C.P., Ang, B.T.: Biomechanical modeling of decompressive craniectomy in traumatic brain injury. Acta Neurochir. Suppl. 102, 279–282 (2008)CrossRefGoogle Scholar
  39. 39.
    Goldsmith, W.: The physical processes producing head injury. In: Proceedings of the Head Injury Conference, pp. 350–382. Lippincott, PA (1966)Google Scholar
  40. 40.
    Gondusky, J.S., Reiter, M.P.: Protecting military convoys in Iraq: an examination of battle injuries sustained by a mechanized battalion during Operation Iraqi Freedom II. Mil. Med. 170(6), 546–549 (2005)Google Scholar
  41. 41.
    Greve, M.W., Zink, B.J.: Pathophysiology of traumatic brain injury. Mt Sinai J. Med. 76(2), 97–104 (2009)CrossRefGoogle Scholar
  42. 42.
    Hagemann, A., Rohr, K., Stiehl, H.S.: Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM. Med. Image Anal. 6(4), 375–388 (2002)CrossRefGoogle Scholar
  43. 43.
    Hardy, C.H., Marcal, P.V.: Elastic Analysis of a Skull. Technical Report No. 8, Office of Naval Research, Contract No. N00014-67-A-0191–0007, Div. Eng, Brown University (1971)Google Scholar
  44. 44.
    Hardy, W.N., Foster, C.D., Mason, M.J., Yang, K.H., King, A.I., Tashman, S.: Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45, 337–368 (2001)Google Scholar
  45. 45.
    Hardy, W.N., Mason, M.J., Foster, C.D., Shah, C.S., Kopacz, J.M., Yang, K.H., King, A.I., Bishop, J., Bey, M., Anderst, W., Tashman, S.: A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51, 17–80 (2007)Google Scholar
  46. 46.
    Ho, J., Kleiven, S.: Dynamic response of the brain with vasculature: a three-dimensional computational study. J. Biomech. 40(13), 3006–3012 (2007)CrossRefGoogle Scholar
  47. 47.
    Ho, J., Kleiven, S.: Can sulci protect the brain from traumatic injury? J. Biomech. 42(13), 2074–2080 (2009)CrossRefGoogle Scholar
  48. 48.
    Hodgson, V.R., Gurdjian, E.S., Thomas, L.M.: Development of a model for the study of head injury during impact tests. In: Proceedings of the 11th Stapp Car Crash Conference, SAE 670923. Anaheim, CA, USA (1967)Google Scholar
  49. 49.
    Hodgson, V.R., Patrick, L.M.: (1968) Dynamic response of the human cadaver head compared to a simple mathematical model. In: Proceedings of the 12th Stapp Car Crash Conference, SAE 680784. Detroit, Michigan, USAGoogle Scholar
  50. 50.
    Horgan, T.J., Gilchrist, M.D.: The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness 8(4), 353–366 (2003)CrossRefGoogle Scholar
  51. 51.
    Holmberg, P., Liljequist, S., Wagner, A.: Secondary brain injuries in thalamus and hippocampus after focal ischemia caused by mild, transient extradural compression of the somatosensori cortex in the rat. Curr. Neurovasc. Res. 6(1), 1–11 (2009)CrossRefGoogle Scholar
  52. 52.
    Hosey, R.R., Liu, Y.K.: A homeomorphic finite element model of the human head and neck. In: Gallagher, P.H., Simon, B.R., Johnson, T.C., Gross, J.F. (eds.) Finite Element in Biomechanics, pp. 379–401. Wiley, New York (1982)Google Scholar
  53. 53.
    Hu, J., Jin, X., Lee, J.B., Zhang, L., Chaudhary, V., Guthikonda, M., Yang, K.H., King, A.I.: Intraoperative brain shift prediction using a 3D inhomogeneous patient-specific finite element model. J. Neurosurg. 106(1), 164–169 (2007)CrossRefGoogle Scholar
  54. 54.
    Huang, H.M., Lee, M.C., Lee, S.Y., Chiu, W.T., Pan, L.C., Chen, C.T.: Finite element analysis of brain contusion: an indirect impact study. Med. Biol. Eng. Comput. 38(3), 253–259 (2000)CrossRefGoogle Scholar
  55. 55.
    Jin, X., Lee, J.B., Leung, L.Y., Zhang, L., Yang, K.H., King, A.I.: Biomechanical response of the bovine pia-arachnoid complex to tensile loading at varying strain-rates. Stapp Car Crash J. 50, 637–649 (2006)Google Scholar
  56. 56.
    Jin, X., Ma, C., Zhang, L., Yang, K.H., King, A.I., Dong, G., Zhang, J.: Biomechanical response of the bovine pia-arachnoid complex to normal traction loading at varying strain rates. Stapp Car Crash J. 51, 115–126 (2007)Google Scholar
  57. 57.
    Jin, X., Yang, K.H., King, A.I.: Mechanical properties of bovine pia-arachnoid complex in shear. J. Biomech (2010). [Epub ahead of print] 2010 Nov 17Google Scholar
  58. 58.
    Johnson, E.A., Young, P.G.: On the use of a patient-specific rapid-prototyped model to simulate the response of the human head to impact and comparison with analytical and finite element models. J. Biomech. 38(1), 39–45 (2005)Google Scholar
  59. 59.
    Kang, H., Willinger, R., Diaw, R.M., Chinn, B.P.: Validation of a 3D anatomic human head model and replication of head impact in motorcycle accident by finite element modeling. In: 41st Stapp Car Crash Conference, SAE 973339. Lake Buena Vista, Florida, USA (1997)Google Scholar
  60. 60.
    Khalil, T.B., Goldsmith, W., Sackman, J.L.: Impact on a model head-helmet system. Int. J. Mech. Sci. 16, 609–625 (1974)CrossRefGoogle Scholar
  61. 61.
    Khalil, T.B., Hubbard, R.P.: Parametric study of head response by finite element modeling. J. Biomech. 10(2), 119–132 (1977)CrossRefGoogle Scholar
  62. 62.
    Kimpara, H., Nakahira, Y., Iwamoto, M., Miki, K., Ichihara, K., Kawano, S., Taguchi, T.: Investigation of anteroposterior head–neck responses during severe frontal impacts using a brain–spinal cord complex FE model. Stapp Car Crash J. 50, 509–544 (2006)Google Scholar
  63. 63.
    King, A.I., Chou, C.C.: Mathematical modeling, simulation and experimental testing of biomechanical system crash response. J. Biomech. 9, 301–317 (1976)CrossRefGoogle Scholar
  64. 64.
    King, A.I., Yang, K.H., Hardy, W.N., Al-Bsharat, A.S., Deng, B., Begeman, P.C., Tashman, S.: Challenging problems and opportunities in impact biomechanics. In: Proceedings of the 1999 Bioengineering Conference, ASME, pp. 269–270 (1999)Google Scholar
  65. 65.
    Kleiven, S., von Holst, H.: Consequences of head size following trauma to the human head. J. Biomech. 35(2), 153–160 (2002)CrossRefGoogle Scholar
  66. 66.
    Kleiven, S., Hardy, W.N.: Correlation of an FE model of the human head with local brain motion—consequences for injury prediction. Stapp Car Crash J. 46, 123–144 (2002)Google Scholar
  67. 67.
    Kleiven, S.: Influence of impact direction on the human head in prediction of subdural hematoma. J. Neurotrauma 20(4), 365–379 (2003)CrossRefGoogle Scholar
  68. 68.
    Kleiven, S.: Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int. J. Crashworthiness 11(1), 65–79 (2006)CrossRefGoogle Scholar
  69. 69.
    Kleiven, S.: Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51, 81–114 (2007)Google Scholar
  70. 70.
    Kochanek, P.M., Marion, D.W., Zhang, W., Schiding, J.K., White, M., Palmer, A.M., Clark, R.S., O’Malley, M.E., Styren, S.D., Ho, C., DeKosky, S.T.: Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J. Neurotrauma 12(6), 1015–1025 (1995)CrossRefGoogle Scholar
  71. 71.
    Krabbel, G., Appel, H.: Development of a finite element model of the human skull. J. Neurotrauma 12(4), 735–742 (1995)CrossRefGoogle Scholar
  72. 72.
    Kuijpers, A.H., Claessens, M.H., Sauren, A.A.: The influence of different boundary conditions on the response of the head to impact: a two-dimensional finite element study. J. Neurotrauma 12(4), 715–724 (1995)CrossRefGoogle Scholar
  73. 73.
    Kumaresan, S., Radhakrishnan, S.: Importance of partitioning membranes of the brain and the influence of the neck in head injury modelling. Med. Biol. Eng. Comput. 34(1), 27–32 (1996)CrossRefGoogle Scholar
  74. 74.
    Kurosawa, Y., Kato, K., Takahashi, T., Kubo, M., Uzuka, T., Fujii, Y., Takahashi, H.: 3-D finite element analysis on brain injury mechanism. In: Conf Proc IEEE Eng Med Biol Soc., 4090-3 (2008)Google Scholar
  75. 75.
    Kurtz, S.M., Thibault, K.L., et al.: Finite element analysis of the deformation of the human infant head under impact conditions. In: The Proceedings of the 8th Injury Prevention through Biomechanics Symposium. Wayne State University, Detroit, Michigan (1998)Google Scholar
  76. 76.
    Langlois, J.A., Rutland-Brown, W., Thomas, K.E.: Traumatic brain injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control (2006)Google Scholar
  77. 77.
    Lee, M.C., Melvin, J.W., Ueno, K.: Finite element analysis of traumatic subdural hematoma. In: 31st Stapp Car Crash Conference, SAE 872201. New Orleans, LA, USA (1987)Google Scholar
  78. 78.
    Levchakov, A., Linder-Ganz, E., Raghupathi, R., Margulies, S.S., Gefen, A.: Computational studies of strain exposures in neonate and mature rat brains during closed head impact. J. Neurotrauma 23(10), 1570–1580 (2006)CrossRefGoogle Scholar
  79. 79.
    Li, J., Zhang, J., Yoganandan, N., Pintar, F., Gennarelli, T.: Regional brain strains and role of falx in lateral impact-induced head rotational acceleration. Biomed. Sci. Instrum. 43, 24–29 (2007)Google Scholar
  80. 80.
    Lighthall, J.W., Melvin, J.W., Ueno, K., Toward a biomechanical criterion for functional brain injury. In: Proceedings of 12th International Technical Conference on Experimental Safety Vehicles, pp. 627–633 (1989)Google Scholar
  81. 81.
    Ling, G., Bandak, F., Armonda, R., Grant, G., Ecklund, J.: Explosive blast neurotrauma. J. Neurotrauma 2007(26), 815–825 (2007)Google Scholar
  82. 82.
    Mao, H., Zhang, L., Yang, K.H., King, A.I.: Application of a finite element model of the brain to study traumatic brain injury mechanisms in the rat. Stapp Car Crash J. 50, 583–600 (2006)Google Scholar
  83. 83.
    Mao, H., Jin, X., Zhang, L., Yang, K.H., Igarashi, T., Noble, L.J., King, A.I.: Finite element analysis of controlled cortical impact induced cell loss. J. Neurotrauma 27, 877–888 (2010)CrossRefGoogle Scholar
  84. 84.
    Mao, H., Yang, K.H., King, A.I., Yang, K.: Computational neurotrauma—design, simulation, and analysis of controlled cortical impact model. Biomech Model Mechanobiol (2010). doi:10.1007/s10237-010-0212-z
  85. 85.
    Margulies, S.S., Thibault, K.L.: Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. J. Biomech. Eng. 122(4), 364–371 (2000)CrossRefGoogle Scholar
  86. 86.
    Marjoux, D., Baumgartner, D., Deck, C., Willinger, R.: Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accid. Anal. Prev. 40(3), 1135–1148 (2008)CrossRefGoogle Scholar
  87. 87.
    Martinez, J.L.: Headrest and seat back proposals designed to eliminate head and neck injuries. In: Proceedings of the 12th Stapp Car Crash Conference, Detroit, Michigan, USA, SAE 680775 (1968)Google Scholar
  88. 88.
    Merchant, H.C., Crispino, A.J.: A dynamic analysis of an elastic model of the human head. J. Biomech. 7(3), 295–301 (1974)CrossRefGoogle Scholar
  89. 89.
    Miller, R.T., Margulies, S.S., Leoni, M., Nonaka, M., Chen, X., Smith, D.H., Meaney, D.F.: Finite element modeling approaches for predicting injury in an experimental model of severe diffuse axonal injury. 42nd Stapp Car Crash Conference, SAE 983154. Tempe, AZ, USA (1998) CrossRefGoogle Scholar
  90. 90.
    Miller, R.T., Smith, D.H., Chen, X., Xu, B., Leoni, M., Nonaka, M., Meaney, D.F.: Comparing experimental data to traumatic brain injury finite element models. In: 43rd Stapp Car Crash Conference, SAE 99SC20. San Diego, CA, USA (1999)Google Scholar
  91. 91.
    Moss, W., King, M.J., Blackman, E.C.: Skull flexture form blast waves: a new mechanism for brain injury with implications for helmet design. J. Acoust. Soc. Am. 125(4), 2650–2665 (2009)Google Scholar
  92. 92.
    Moore, D.F., Jerusalem, A., Nyein, M., Noels, L., Jaffee, M.S., Radovitzky, R.A.: Computational biology—modeling of primary blast effects on the central nervous system. Neuroimage 47(Suppl 2), 10–20 (2009)CrossRefGoogle Scholar
  93. 93.
    Nahum, A.M., Smith, R., Ward, C.C.: Intracranial pressure dynamics during head impact. In: Proceedings of the 21st Stapp Car Crash Conference, SAE Paper No. 770922. Society of Automotive Engineers, Warrendale, PA (1977)Google Scholar
  94. 94.
    Nahum, A.M., Smith, R.W., Raasch, F.D., Ward, C., 1979. Intracranial pressure relationships in the protected and unprotected head. In: Proceedings of the 23rd Stapp Car Crash Conference, SAE 791024. San Diego, California, USAGoogle Scholar
  95. 95.
    Nahum, A.M., Ward, C., Schneider, D., Raasch, F., Adams, S.: A study of impacts to the lateral protected and unprotected head. In: 25th Stapp Car Crash Conference, San Francisco, CA, SAE Paper No. 811006 (1981)Google Scholar
  96. 96.
    Newman, J.A., Shewchenko, N., Welbourne, E.: A proposed new biomechanical head injury assessment function—the maximum power index. In: 44th Stapp Car Crash Conf. SAE 2000-01-SC16 (2000)Google Scholar
  97. 97.
    Nyquist, G.W., Cavanaugh, J.M., Goldberg, S.J., King, A.I.: Facial impact tolerance and response. In: Proceedings of the 30th Stapp Car Crash Conference, SAE Paper No. 861896. Society of Automotive Engineers, Warrendale, PA (1986)Google Scholar
  98. 98.
    Okie, S.: Traumatic brain injury in the war zone. N. Engl. J. Med. 352(20), 2043–2047 (2005)CrossRefGoogle Scholar
  99. 99.
    Pintar, F.A., Yoganandan, N., Voo, L., Cusick, J.F., Maiman, D.J., Sances, A. Jr.: Dynamic characteristics of the human cervical spine. In: Proceedings of the 39th Stapp Car Crash Conference, SAE 952722. (1995)Google Scholar
  100. 100.
    Paxinos, G., Watson, C.: The Rat Brain in Stereotaxic Coordinates. Elsevier, San Diego (2005)Google Scholar
  101. 101.
    Pena, A., Pickard, J.D., Stiller, D., Harris, N.G., Schuhmann, M.U.: Brain tissue biomechanics in cortical contusion injury: a finite element analysis. Acta Neurochir. Suppl. 95, 333–336 (2005)CrossRefGoogle Scholar
  102. 102.
    Prange, M.T., Kiralyfalvi, G., Margulies, S.S.: Pediatric rotational inertial brain injury: the relative influence of brain size and mechanical properties. Stapp Car Crash Conference, SAE 99SC23. San Diego, California, USA (1999)Google Scholar
  103. 103.
    Raul, J.S., Baumgartner, D., Willinger, R., Ludes, B.: Finite element modelling of human head injuries caused by a fall. Int. J. Leg. Med. 120(4), 212–218 (2006)CrossRefGoogle Scholar
  104. 104.
    Raul, J.S., Deck, C., Willinger, R., Ludes, B.: Finite-element models of the human head and their applications in forensic practice. Int. J. Leg. Med. 122(5), 359–366 (2008)CrossRefGoogle Scholar
  105. 105.
    Ross, D.T., Meaney, D.F., Sabol, M.K., Smith, D.H., Gennarelli, T.A.: Distribution of forebrain diffuse axonal injury following inertial closed head injury in miniature swine. Exp. Neurol. 126(2), 291–299 (1994)CrossRefGoogle Scholar
  106. 106.
    Roth, S., Raul, J.S., Ludes, B., Willinger, R.: Finite element analysis of impact and shaking inflicted to a child. Int. J. Leg. Med. 121(3), 223–228 (2007)CrossRefGoogle Scholar
  107. 107.
    Roth, S., Raul, J.S., Willinger, R.: Biofidelic child head FE model to simulate real world trauma. Comput. Methods Programs Biomed. 90(3), 262–274 (2008)CrossRefGoogle Scholar
  108. 108.
    Roth, S., Vappou, J., Raul, J.S., Willinger, R.: Child head injury criteria investigation through numerical simulation of real world trauma. Comput. Methods Programs Biomed. 93(1), 32–45 (2009)CrossRefGoogle Scholar
  109. 109.
    Rousseau, P., Hoshizaki, T.B., Gilchrist, M.D., Post, A.: Estimating the influence of neckform compliance on brain tissue strain during helmeted impact. Stapp Car Crash J. 54, 37–48 (2010)Google Scholar
  110. 110.
    Ruan, J.S., Khalil, T., King, A.I.: Human head dynamic response to side impact by finite element modeling. J. Biomech. Eng. 113(3), 276–283 (1991)CrossRefGoogle Scholar
  111. 111.
    Ruan, J.S., Khalil, T., King, A.I.: Finite element modeling of direct head impact. 37th Stapp Conference proceedings, SAE 933114. San Antonio, TX (1993)Google Scholar
  112. 112.
    Ruan, J.S., Khalil, T., King, A.I.: Dynamic response of the human head to impact by three-dimensional finite element analysis. J. Biomech. Eng. 116(1), 44–50 (1994)CrossRefGoogle Scholar
  113. 113.
    Ruan, J.S., Prasad, P.: Head injury potential assessment in frontal impacts by mathematical modeling. In: Proceedings of the 38th Stapp Car Crash Conference, SAE 942212. Ft. Lauderdale, Florida, USA (1994)CrossRefGoogle Scholar
  114. 114.
    Ruan, J.S., Prasad, P.: Coupling of a finite element human head model with a lumped parameter hybrid iii dummy model: preliminary results. J. Neurotrauma 12(4), 725–734 (1995)CrossRefGoogle Scholar
  115. 115.
    Ruan, J., Prasad, P.: The effects of skull thickness variations on human head dynamic impact responses. Stapp Car Crash J. 45, 395–414 (2001)Google Scholar
  116. 116.
    Ruan, JS., Prasad, P.: Comments: on the consequences of head size following impact to the human head. J Biomech. 39(2): 383–385; author reply 385–387 (2006)Google Scholar
  117. 117.
    Saberi, H., Seddighi, A.S., Farmanzad, F.: Finite element analysis of an elastic model of the brain: distortion due to acute epidural hematoma—the role of the intra-ventricular pressure gradient. Comput Aided Surg. 12(2), 131–136 (2007)Google Scholar
  118. 118.
    Saczalski, K.J., Richardson, E.Q.: Nonlinear numerical prediction of human head/helmet crash impact response. Aviat. Space Environ. Med. 49(1 Pt. 2):114–119 (1978)Google Scholar
  119. 119.
    Sarron, J.C., Caillou, J.P., Da Cunha, J., Allain, J.C., Tramecon, A.: Consequences of nonpenetrating projectile impact on a protected head: study of rear effects of protections. J. Trauma 49(5), 923–929 (2000)CrossRefGoogle Scholar
  120. 120.
    Scheff, S.W., Baldwin, S.A., Brown, R.W., Kraemer, P.J.: Morris water maze deficits in rats following traumatic brain injury: lateral controlled cortical impact. J. Neurotrauma 14(9), 615–627 (1997)CrossRefGoogle Scholar
  121. 121.
    Shafieian, M., Darvish, K.K., Stone, J.R.: Changes to the viscoelastic properties of brain tissue after traumatic axonal injury. J. Biomech. 42(13), 2136–2142 (2009)CrossRefGoogle Scholar
  122. 122.
    Shreiber, D.I., Bain, A.C., Meaney, D.F.: In vivo thresholds for mechanical injury to the blood–brain barrier. In: 41th Stapp Car Crash Conference, SAE 973335. Lake Buena Vista, Florida, USA (1997)Google Scholar
  123. 123.
    Shugar, T.A.: Transient structural response of the linear skull-brain system. Proceedings of the 19th Stapp Car Crash Conference, SAE 751161. San Diego, California, USA (1975)Google Scholar
  124. 124.
    Slattenschek, A., Tauffkirchen, W., Benedikter, G.: Quantification of internal head injury by means of the phantom head and the impact assessment methods. In: Proceedings of the 15th Stapp Car Crash Conference, SAE 710879. San Diego, California, USA (1971)Google Scholar
  125. 125.
    Soza, G., Grosso, R., Labsik, U., Nimsky, C., Fahlbusch, R., Greiner, G., Hastreiter, P.: Fast and adaptive finite element approach for modeling brain shift. Comput. Aided Surg. 8(5), 241–246 (2003)CrossRefGoogle Scholar
  126. 126.
    Sutton, R.L., Lescaudron, L., Stein, D.G.: Unilateral cortical contusion injury in the rat: vascular disruption and temporal development of cortical necrosis. J. Neurotrauma 10(2), 135–149 (1993)CrossRefGoogle Scholar
  127. 127.
    Takhounts, E.G., Eppinger, R.H., Campbell, J.Q., Tannous, R.E., Power, E.D., Shook, L.S.: On the development of the Simon finite element head model. Stapp Car Crash J. 47, 107–133 (2003)Google Scholar
  128. 128.
    Takhounts, E.G., Ridella, S.A., Hasija, V., Tannous, R.E., Campbell, J.Q., Malone, D., Danelson, K., Stitzel, J., Rowson, S., Duma, S.: Investigation of traumatic brain injuries using the next generation of simulated injury monitor (simon) finite element head model. Stapp Car Crash J. 52, 1–31 (2008)Google Scholar
  129. 129.
    Takizawa, H., Sugiura, K., Baba, M., Miller, J.D.: Analysis of intracerebral hematoma shapes by numerical computer simulation using the finite element method. Neurol Med Chir (Tokyo) 34(2), 65–69 (1994)CrossRefGoogle Scholar
  130. 130.
    Taylor, P.A., Ford, C.C.: Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. J. Biomech. Eng. 131(6), 061007 (2009)CrossRefGoogle Scholar
  131. 131.
    Thibault, K.T., Kurtz, S.M., Margulies, S.S.: Effect of the age-dependent properties of the braincase on the response of the infant brain to impact. BED Adv. Bioeng., In Proceedings for the Winter Annual Meeting of the ASME (1997)Google Scholar
  132. 132.
    Thurman, D.J., Alverson, C., Browne, D.: Traumatic brain injury in the United States: a report to congress. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control (2000)Google Scholar
  133. 133.
    Trosseille, X., Tarriere, C., Lavaste, F., Guillon, F., Domont, A.: Development of a FEM of the human head according to a specific test protocol. In: Proceedings of 30th Stapp Car Crash Conference, SAE 922527, pp. 235–253 (1992)Google Scholar
  134. 134.
    Thunnissen, J.G.M., Wismans, J.S.H.M., Ewing, C.L., Thomas, D.J.: Human volunteer head-neck response in frontal flexion: a new analysis. In: Proceedings of the 39th Stapp Car Crash Conference, SAE 952721 (1995)Google Scholar
  135. 135.
    Turquier, F., Trosseille, X., Lavaste, F., Tarriere, C., Dômont, A., Kang, H.S., Willinger, R.: Validation study of a 3D finite element head model against experimental data. In: 40th Stapp Car Crash Conference, SAE 962431. Albuquerque, New Mexico, USA (1996)Google Scholar
  136. 136.
    Ueno, K., Melvin, J.W., Li, L., Lighthall, J.W.: Development of tissue level brain injury criteria by finite element analysis. J. Neurotrauma 12(4), 695–706 (1995)CrossRefGoogle Scholar
  137. 137.
    Viano, D.C., Casson, I.R., Pellman, E.J., Zhang, L., King, A.I., Yang, K.H.: Concussion in professional football: brain responses by finite element analysis: Part 9. Neurosurgery 57(5), 891–916; discussion 891–916 (2005)Google Scholar
  138. 138.
    Ward, C.: Finite element models of the head and their use in brain injury research. In: Proceedings of the 26th Stapp Car Crash Conference, SAE 821154.1982. Ann Arbor, Michigan, USA Google Scholar
  139. 139.
    Ward, C.C., Chan, M., Nahum, A.M.: Intracranial pressure—a brain injury criterion. In: 24th Stapp Car Crash Conference, SAE 801304, Troy, Michigan, USA (1980)Google Scholar
  140. 140.
    Ward, C.C., Nikravesh, P.E., Thompson, R.B.: Biodynamic finite element models used in brain injury research. Aviat Space Environ. Med. 49(1 Pt. 2), 136–142 (1978) Google Scholar
  141. 141.
    Ward, C., Thompson, R.B.: The development of a detailed finite element brain model. In 19th Stapp Car Crash Conference, SAE 751163. San Diego, CA, USA (1975)Google Scholar
  142. 142.
    Willinger, C.M., Kopp, D., Cesari, D.: New concept of contrecoup lesions mechanism: modal analysis of a finite element head model, pp. 283–297. IRCOBI Verona, Italy (1992)Google Scholar
  143. 143.
    Willinger, R., Taleb, L., Kopp, C.M.: Modal and temporal analysis of head mathematical models. J. Neurotrauma 12(4), 743–754 (1995)CrossRefGoogle Scholar
  144. 144.
    Willinger, R., Taled, L., Pradoura, P.: Head biomechanics from the finite element model to the physical model, pp. 245–260. IRCOBI, Brunnen, Switzerland (1995)Google Scholar
  145. 145.
    Willinger, R., Kang, H.S., Diaw, B.: Three-dimensional human head finite-element model validation against two experimental impacts. Ann. Biomed. Eng. 27(3), 403–410 (1999)CrossRefGoogle Scholar
  146. 146.
    Wittek, A., Kikinis, R., Warfield, S.K., Miller, K.: Brain shift computation using a fully nonlinear biomechanical model. Medical Image Computing and Computer-Assisted Intervention—MICCAI 8(Pt 2), 583–590 (2005)Google Scholar
  147. 147.
    Wittek, A., Dutta-Roy, T., Taylor, Z., Horton, A., Washio, T., Chinzei, K., Miller, K.: Subject-specific non-linear biomechanical model of needle insertion into brain. Comput. Methods Biomech. Biomed. Eng. 11(2), 135–146 (2008)CrossRefGoogle Scholar
  148. 148.
    Xu, W., Yang, J.: Development and validation of head finite element model for traffic injury analysis. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 25(3), 556–561 (2008)Google Scholar
  149. 149.
    Yoganandan, N., Li, J., Zhang, J., Pintar, F.A., Gennarelli, T.A.: Influence of angular acceleration–deceleration pulse shapes on regional brain strains. J. Biomech. 41(10), 2253–2262 (2008)CrossRefGoogle Scholar
  150. 150.
    Zhang, J., Yoganandan, N., Pintar, F.A., Gennarelli, T.A.: Brain strains in vehicle impact tests. Annu. Proc. Assoc. Adv. Automot. Med. 50, 1–12 (2006)Google Scholar
  151. 151.
    Zhang, J., Yoganandan, N., Pintar, F.A., Gennarelli, T.A., Shender, B.S.: A finite element study of blast traumatic brain injury—biomed 2009. Biomed. Sci. Instrum. 45, 119–124 (2009)Google Scholar
  152. 152.
    Zhang, L., Bae, J., Hardy, W.N., Monson, K.L., Manley, G.T., Goldsmith, W., Yang, K.H., King, A.I.: Computational study of the contribution of the vasculature on the dynamic response of the brain. Stapp Car Crash J. 46, 145–164 (2002)Google Scholar
  153. 153.
    Zhang, L., Yang, K.H., King, A.I.: Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma 18(1), 21–30 (2001a)MATHCrossRefGoogle Scholar
  154. 154.
    Zhang, L., Yang, K.H., Dwarampudi, R., Omori, K., Li, T., Chang, K., Hardy, W.N., Khalil, T.B., King, A.I.: Recent advances in brain injury research: a new human head model development and validation. Stapp Car Crash J. 45, 369–394 (2001b)Google Scholar
  155. 155.
    Zhou, C., Khalil, T.B., King, A.I.: Shear stress distribution in the porcine brain due to rotational impact. In: 38th Stapp Car Crash Conference, SAE 942214. Ft. Lauderdale, Florida, USA (1994)Google Scholar
  156. 156.
    Zhou, C., Khalil, T.B., King, A.I.: A new model comparing impact responses of the homogeneous and inhomogeneous human brain. In: Proceedings of the 39th Stapp Car Crash Conference, SAE Paper No. 952714. Society of Automotive Engineers, Warrendale, PA (1995)Google Scholar
  157. 157.
    Zhu, Q., Prange, M., Margulies, S.: Predicting unconsciousness from a pediatric brain injury threshold. Dev. Neurosci. 28(4–5), 388–395 (2006)CrossRefGoogle Scholar
  158. 158.
    Zhu, F., Mao, H., Dal Cengio Leonardi, A., Wagner, C., Chou, C., Jin, X., Bir, C., VandeVord, P., Yang, K.H., King, A.I.: Development of an FE model of the rat head subjected to air shock loading. Stapp Car Crash J. 54, 211–225 (2010)Google Scholar
  159. 159.
    Zong, Z., Lee, H.P., Lu, C.: A three-dimensional human head finite element model and power flow in a human head subject to impact loading. J. Biomech. 39(2), 284–292 (2006)CrossRefGoogle Scholar
  160. 160.
    Zoroya, G.: Key Iraq wound: Brain Trauma, in USA Today (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • King H. Yang
    • 1
  • Haojie Mao
    • 1
  • Christina Wagner
    • 1
  • Feng Zhu
    • 1
  • Clifford C. Chou
    • 1
  • Albert I. King
    • 1
  1. 1.Wayne State UniversityDetroitUSA

Personalised recommendations