Biomechanical Modelling of Cells in Mechanoregulation

  • Alexander B. Lennon
  • Hanifeh Khayyeri
  • Feng Xue
  • Patrick J. Prendergast
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 4)


Many cells are mechanoregulated; their activities are performed at a rate partly determined by the biophysical stimulus acting on them. Computer simulations that would capture this could be used to predict the effect of physical exercise on tissue health. They could also be used to simulate how the tissues surrounding a medical device would respond to the placement of that device. Since cells are the actors within tissues, such simulations require models of how cells themselves are mechanoregulated. In this chapter, we review how mechanoregulation simulations may be built up from models in three ways: cells as simple points, cells as multiple points, cells as structures. In particular, a computer simulation method for tissue differentiation using cells as points is also given, and an approach for extending it to include cells as multiple points is presented. Cells as structures in the form of a hybrid tensegrity-continuum model is presented, and its potential for use in mechanoregulation simulations is discussed.


  1. 1.
    Lacroix, D., Prendergast, P.J., Li, G., Marsh, D.: Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med. Biol. Eng. Comput. 40, 14–21 (2002)CrossRefGoogle Scholar
  2. 2.
    Geris, L., Gerisch, A., van der Sloten, J., Weiner, R., Oosterwyck, H.V.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 251, 137–158 (2008)CrossRefGoogle Scholar
  3. 3.
    Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013 (1992)CrossRefGoogle Scholar
  4. 4.
    Ouchi, N., Glazier, J., Rieu, J., Upadhyaya, A., Sawada, Y.: Improving the realism of the cellular Potts model in simulations of biological cells. Physica A 329(3–4), 451–458 (2003)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kamm, R.D., McVittie, A.K., Bathe, M.: On the role of continuum models in mechanobiology. In: Casey, J., Bao, G. (eds.) Mechanics in Biology, pp. 1–11 (2000)Google Scholar
  6. 6.
    Ingber, D.E.: Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575–599 (1997)CrossRefGoogle Scholar
  7. 7.
    Slomka, N., Gefen, A.: Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics. J. Biomech. 43(9), 1806–1816 (2010)CrossRefGoogle Scholar
  8. 8.
    McGarry, J.P., Fu, J., Yang, M.T., Chen, C.S., McMeeking, R.M., Evans, A.G., Deshpande, V.S.: Simulation of the contractile response of cells on an array of micro-posts. Philos. Transact. A Math. Phys. Eng. Sci. 367(1902), 3477–3497 (2009)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Maurin, B., Cañadas, P., Baudriller, H., Montcourrier, P., Bettache, N.: Mechanical model of cytoskeleton structuration during cell adhesion and spreading. J. Biomech. 41(9), 2036–2041 (2008)CrossRefGoogle Scholar
  10. 10.
    Prendergast, P.J.: What Matters in Bioengineering, An Inaugral Lecture for the Chair of Bioengineering. Trinity College Dublin School of Engineering, Dublin (2008)Google Scholar
  11. 11.
    Prendergast, P.J., Checa, S., Lacroix, D.: Computational models of tissue differentiation. In: De, S., Guilak, F., Mofrad, R. (eds.) Computational Modeling in Biomechanics, pp. 335–372. Springer, New York (2010)Google Scholar
  12. 12.
    Checa, S., Byrne, D.P., Prendergast, P.J.: Predictive modelling in mechanobiology: combining algorithms for cell activities in response to physical stimuli using a lattice-modelling approach. In: Computer Methods in Mechanics, pp. 423–435. Springer (2010)Google Scholar
  13. 13.
    Checa, S., Sandino, C., Byrne, D.P., Kelly, D.J., Lacroix, D., Prendergast, P.J.: Computational techniques for selection of biomaterial scaffolds for tissue engineering. In: Fernandes, P.R., Bártolo, p. (eds.) Advances of modeling in Tissue Engineering. Springer (2010, in press)Google Scholar
  14. 14.
    Sloot, P.M.A., Hoekstra, A.G.: Multi-scale modelling in computational biomedicine. Brief. Bioinform. 11(1), 142–152 (2010)CrossRefGoogle Scholar
  15. 15.
    Boyle, C., Lennon, A., Early, M., Kelly, D., Lally, C., Prendergast, P.: Computational simulation methodologies for mechanobiological modelling: a cell-centred approach to neointima development in stents. Philos. Trans. R. Soc. A Math. Phys. 368(1921), 2919–2935 (2010)Google Scholar
  16. 16.
    Codling, E.A., Plank, M.J., Benhamou, S.: Random walk models in biology. J. R. Soc. Interface 5(25), 813–834 (2008)CrossRefGoogle Scholar
  17. 17.
    Checa, S., Prendergast, P.J.: A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng. 37(1), 129–145 (2009)CrossRefGoogle Scholar
  18. 18.
    Pérez, M.A., Prendergast, P.J.: Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J. Biomech. 40(10), 2244–2253 (2007)CrossRefGoogle Scholar
  19. 19.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)MATHCrossRefGoogle Scholar
  20. 20.
    Chen, F., Song, L., Mauck, R.L., Li, W.J., Tuan, R.S.: Mesenchymal stem cells. In: Lanza, R., Langer, R.S., Vacanti J. (eds.) Principles of Tissue Engineering, 3rd edn. Elsevier Academic Press, Burlington (2007)Google Scholar
  21. 21.
    Minguell, J.J., Erices, A., Conget, P.: Mesenchymal stem cells. Exp. Biol. Med. 226, 507–520 (2001)Google Scholar
  22. 22.
    Kearney, E.M., Prendergast, P.J., Campbell, V.A.: Mechanisms of strain-mediated mesenchymal stem cell apoptosis. J. Biomech. Eng. 130, 061004 (2008)CrossRefGoogle Scholar
  23. 23.
    Kearney, E.M., Farrell, E., Prendergast, P.J., Campbell, V.A., Tensile.: Strain as a regulator of Mesenchymal stem cell osteogenesis. Ann. Biomed. Eng. 38(5), 1767–1779 ( 2010) Google Scholar
  24. 24.
    Pauwels, F.: A new theory of the influence of mechanical stimuli on the differentiation of supporting tissue. The tenth contribution to the functional anatomy and causal morphology of the supporting structure. Zeitschrift für Anatomie und Entwicklungsgeschichte, pp. 478–515 (1960)Google Scholar
  25. 25.
    Carter, D., Blenman, P., Beaupre, G.: Correlations between mechanical stress history and tissue differentiation in initial fracure healing. J. Orthop. Res. 6, 736–748 (1988)CrossRefGoogle Scholar
  26. 26.
    Claes, L.E., Heigele, C.A.: Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32, 255–266 (1999)CrossRefGoogle Scholar
  27. 27.
    Prendergast, P.J., Huiskes, R., Soballe, K.: ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30, 539–548 (1997)CrossRefGoogle Scholar
  28. 28.
    Isaksson, H., van Donkelaar, C.C., Huiskes, R., Ito, K.: Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J. Orthop. Res. 24, 898–907 (2006)CrossRefGoogle Scholar
  29. 29.
    Hayward, L.N., Morgan, E.F.: Assessment of a mechano-regulation theory of skeletal tissue differentiation in an in vivo model of mechanically induced cartilage formation. Biomech. Model. Mechanobiol 8(6), 447–455 (2009)Google Scholar
  30. 30.
    Geris, L., Vandamme, K., Naert, I., Vander Sloten, J., Duyck, J., Van Oosterwyck, H.: Application of mechanoregulatory models to simulate peri-implant tissue formation in an in vivo bone chamber. J. Biomech. 41, 145–154 (2008)CrossRefGoogle Scholar
  31. 31.
    Carter, D.R., Beaupre, G.S., Giori, N.J., Helms, J.A.: Mechanobiology of skeletal regeneration. Clin. Orthop. Relat. Res. 355 Suppl. S41–S55 (1998)Google Scholar
  32. 32.
    Lacroix, D., Prendergast, P.J.: A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35, 1163–1171 (2002)CrossRefGoogle Scholar
  33. 33.
    Byrne, D.P., Lacroix, D., Planell, J.A., Kelly, D.J., Prendergast, P.J.: Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28, 5544–5554 (2007)CrossRefGoogle Scholar
  34. 34.
    Kelly, D.J., Prendergast, P.J.: Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng. 12, 2509–2519 (2006)CrossRefGoogle Scholar
  35. 35.
    Huiskes, R., Van Driel, W.D., Prendergast, P.J., Soballe, K.: A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J. Mater. Sci.: Mater. Med. 8, 785–788 (1997)CrossRefGoogle Scholar
  36. 36.
    Ambard, D., Swider, P.: A predictive mechano-biological model of the bone-implant healing. Eur. J. Mech. A Solids 25, 927–937 (2006)MATHCrossRefGoogle Scholar
  37. 37.
    Isaksson, H., Comas, O., van Donkelaar, C.C., Mediavilla, J., Wilson, W., Huiskes, R., Ito, K.: Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J. Biomech. 40, 2002–2011 (2007)CrossRefGoogle Scholar
  38. 38.
    Loboa, E.G., Fang, T.D., Parker, D.W., Warren, S.M., Fong, K.D., Longaker, M.T., Carter, D.R.: Mechanobiology of mandibular distraction osteogenesis: finite element analyses with a rat model. J. Orthop. Res. 23, 663–670 (2005)CrossRefGoogle Scholar
  39. 39.
    Morgan, E.F., Longaker, M.T., Carter, D.R.: Relationships between tissue dilatation and differentiation in distraction osteogenesis. Matrix Biol. 25, 94–103 (2006)CrossRefGoogle Scholar
  40. 40.
    Boccaccio, A., Prendergast, P.J., Pappalettere, C., Kelly, D.J.: Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med. Biol. Eng. Comput. 46, 283–298 (2008)CrossRefGoogle Scholar
  41. 41.
    Geris, L., Van Oosterwyck, H., Vander Sloten, J., Duyck, J., Naert, I.: Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants. Comput. Methods Biomech. Biomed. Eng. 6, 277–288 (2003)CrossRefGoogle Scholar
  42. 42.
    Gomez-Benito, M.J., Garcia-Aznar, J.M., Kuiper, J.H., Doblare, M.: Influence of fracture gap size on the pattern of long bone healing: a computational study. J. Theor. Biol. 235, 105–119 (2005)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Liu, X., Niebur, G.L.: Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech. Model. Mechanobiol. 7, 335–344 (2008)CrossRefGoogle Scholar
  44. 44.
    Isaksson, H., van Donkelaar, C.C., Huiskes, R., Ito, K.: A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J. Theor. Biol. 252, 230–246 (2008)CrossRefGoogle Scholar
  45. 45.
    Checa, S., Prendergast, P.J.: A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng. 37, 129–145 (2009)CrossRefGoogle Scholar
  46. 46.
    Guldberg, R.E., Caldwell, N.J., Guo, X.E., Goulet, R.W., Hollister, S.J., Goldstein, S.A.: Mechanical stimulation of tissue repair in the hydraulic bone chamber. J. Bone Miner. Res. 12, 1295–1302 (1997)CrossRefGoogle Scholar
  47. 47.
    Tagil, M., Aspenberg, P.: Cartilage induction by controlled mechanical stimulation in vivo. J. Orthop. Res. 17, 200–204 (1999)CrossRefGoogle Scholar
  48. 48.
    de Rooij, P.P., Siebrecht, M.A., Tagil, M., Aspenberg, P.: The fate of mechanically induced cartilage in an unloaded environment. J. Biomech. 34, 961–966 (2001)CrossRefGoogle Scholar
  49. 49.
    Hannink, G., Aspenberg, P., Schreurs, B.W., Buma, P.: Development of a large titanium bone chamber to study in vivo bone ingrowth. Biomaterials 27, 1810–1816 (2006)CrossRefGoogle Scholar
  50. 50.
    Perez, M.A., Prendergast, P.J.: Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J. Biomech. 40, 2244–2253 (2007)CrossRefGoogle Scholar
  51. 51.
    Lanza, R., Thomas, E., Thomson, J., Gearhart, J., Hogan, B., Melton, D., Pederson, R., Wilmut, I. (eds.) Essentials of Stem Cell Biology. Elsevier Academic Press, San Diego (2009)Google Scholar
  52. 52.
    Fletcher, E.C., Lesske, J., Qian, W., Miller, C.C., Unger, T.: Repetitive episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 19, 555–561 (1992)Google Scholar
  53. 53.
    Hulman, S., Falkner, B.: The effect of excess dietary sucrose on growth, blood pressure, and metabolism in developing Sprague–Dawley rats. Pediatr. Res. 36, 95–101 (1994)CrossRefGoogle Scholar
  54. 54.
    Grinnell, F.: Fibroblasts myofibroblasts, and wound contraction. J. Cell Biol. 124, 401–404 (1994)CrossRefGoogle Scholar
  55. 55.
    Tamariz, E., Grinnell, F.: Modulation of fibroblast morphology and adhesion during collagen matrix remodeling. Mol. Biol. Cell 13, 3915–3929 (2002)CrossRefGoogle Scholar
  56. 56.
    Fisher, J.P., Mikos, A.G., Bronzino, J.D. (eds.) Tissue Engineering. CRC Press, Boca Raton (2007) Google Scholar
  57. 57.
    Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47(3), 2128 (1993)CrossRefGoogle Scholar
  58. 58.
    Chen, N., Glazier, J.A., Izaguirre, J.A., Alber, M.S.: A parallel implementation of the Cellular Potts Model for simulation of cell-based morphogenesis. Comput. Phys. Commun. 176(11–12), 670–681 (2007)CrossRefGoogle Scholar
  59. 59.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087 (1953)CrossRefGoogle Scholar
  60. 60.
    Gusatto, É., Mombach, J.C.M., Cercato, F.P., Cavalheiro, G.H.: An efficient parallel algorithm to evolve simulations of the cellular potts model. Parallel Process. Lett. 15(1/2), 199–208 (2005)MathSciNetCrossRefGoogle Scholar
  61. 61.
    van Oers, R.F.M., Ruimerman, R., Tanck, E., Hilbers, P.A.J., Huiskes, R.: A unified theory for osteonal and hemi-osteonal remodeling. Bone 42(2), 250–259 (2008)CrossRefGoogle Scholar
  62. 62.
    Merks, R.M., Brodsky, S.V., Goligorksy, M.S., Newman, S.A., Glazier, J.A.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289(1), 44–54 (2006)CrossRefGoogle Scholar
  63. 63.
    Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S.A., Glazier, J.A.: CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 20(7), 1129–1137 (2004)CrossRefGoogle Scholar
  64. 64.
    Swat, M.H., Hester, S.D., Heiland, R.W., Zaitlen, B.L., Glazier, J.A., Shirinifard, A.: CompuCell3D Manual and Tutorial, Version 3.4.1. Biocomplexity Institute and Department of Physics, Indiana University, Bloomington (2009)Google Scholar
  65. 65.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)MATHCrossRefGoogle Scholar
  66. 66.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, MIT USA (2001) Google Scholar
  67. 67.
    Wu, K., Otoo, E., Shoshani, A.: Optimizing connected component labeling algorithms (2005)Google Scholar
  68. 68.
    McGarry, J.G., Prendergast, P.J.: A three-dimensional finite element model of an adherent eukaryotic cell. Eur. Cell Mater. 7, 27–33 (2004). discussion 33-34Google Scholar
  69. 69.
    De Santis, G., Boschetti, F., Lennon, A.B., Prendegast, P.J., Verdonck, P., Verhegghe, B.: How an eukaryotic cell senses the substrate stiffness? An exploration using a finite element model with cytoskeleton modelled as tensegrity structure. In: Proceedings of the ASME 2009 Summer Bioengineering Conference, American Society of Mechanical Engineers (ASME), Lake Tahoe, CA, USA (2009)Google Scholar
  70. 70.
    McGarry, J.P., Murphy, B.P., McHugh, P.E.: Computational mechanics modelling of cell-substrate contact during cyclic substrate deformation. J. Mech. Phys. Solids 53(12), 2597–2637 (2005)MATHCrossRefGoogle Scholar
  71. 71.
    Guilak, F., Tedrow, J.R., Burgkart, R.: Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269(3), 781–786 (2000)CrossRefGoogle Scholar
  72. 72.
    Ingber, D.: Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116(7), 1157–1173 (2003)CrossRefGoogle Scholar
  73. 73.
    Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A., Talbot, J., Mahadevan, L., Parker, K.K., Ingber, D.E., Weitz, D.A.: Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol 173(5), 733–741 (2006)CrossRefGoogle Scholar
  74. 74.
    Kumar, S., Maxwell, I., Heisterkamp, A., Polte, T., Lele, T., Salanga, M., Mazur, E., Ingber, D.: Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90(10), 3762–3773 (2006)CrossRefGoogle Scholar
  75. 75.
    Dahl, K.N., Booth-Gauthier, E.A., Ladoux, B.: In the middle of it all: mutual mechanical regulation between the nucleus and the cytoskeleton. J. Biomech. 43(1), 2–8 (2010)Google Scholar
  76. 76.
    Xue, F., McKayed, K., Lennon, A.B., Campbell, V.A., Prendergast, P.J.: Computational investigation of influence of age on biomechanics of mesenchymal stem cells. In: Proceedings of the 9th international symposium on computer methods in biomechanics and biomedical engineering 2010, Valencia, Paper 154, CDROM (2010, in press)Google Scholar
  77. 77.
    McGarry, J.G., Klein-Nulend, J., Mullender, M.G., Prendergast, P.J.: A comparison of strain and fluid shear stress in stimulating bone cell responses—a computational and experimental study. FASEB J. 19(3), 482–484 (2005)Google Scholar
  78. 78.
    De Santis, G., Lennon, A.B., Boschetti, F., Verhegghe, B., Verdonck, P., Prendergast, P.J.: Principle of matrix-elasticity sensing by cells. Eur. Cells Mater. (2010) (in press)Google Scholar
  79. 79.
    Hofmann, U.G., Rotsch, C., Parak, W.J., Radmacher, M.: Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J. Struct. Biol. 119(2), 84–91 (1997)CrossRefGoogle Scholar
  80. 80.
    Domke, J., Dannohl, S., Parak, W.J., Muller, O., Aicher, W.K., Radmacher, M.: Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids Surf. B Biointerfaces 19(4), 367–379 (2000)Google Scholar
  81. 81.
    Mathur, A.B., Collinsworth, A.M., Reichert, W.M., Kraus, W.E., Truskey, G.A.: Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34(12), 1545–1553 (2001)CrossRefGoogle Scholar
  82. 82.
    Prendergast, P.J.: Biomechanical Techniques for Pre-Clinical Testing of Prostheses and Implants, Lecture Notes. Institute for Fundamental Technological Research, Polish Academy of Sciences, Warsaw (2001)Google Scholar
  83. 83.
    Miles, A.W., Tanner, K.E.: Strain Measurement in Biomechanics. Springer (1992)Google Scholar
  84. 84.
    Lennon, A.B., Prendergast, P.J. (eds.): Finite Element Modelling in Biomechanics and Mechanobiology with papers on patient-specific analysis, high resolution analysis, and applications in orthopaedics, cardiology, and cellular bioengineering. Trinity Centre for Bioengineering, Trinity College, Dublin (2007)Google Scholar
  85. 85.
    Campbell, V.A., O'Connell, B.: Cellular & molecular biomechanics. In: Lee, T.C., Niederer, P.F. (eds.) Basic Engineering for Medics and Biologists—an ESEM primer, pp. 202–213. IOS Press, Amsterdam (2010)Google Scholar
  86. 86.
    Huiskes, R., Chao, E.Y.S.: A survey of finite element analysis in orthopaedic biomechanics: the first decade. J. Biomech. 16, 385–409 (1983)CrossRefGoogle Scholar
  87. 87.
    Prendergast, P.J.: Finite element models in tissue mechanics and orthopaedic implant design. Clin. Biomech. 12, 343–368 (1997)CrossRefGoogle Scholar
  88. 88.
    Kiousis, D.E., Gasser, T.C., Holzapfel, G.A.: A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann. Biomed. Eng. 35(11), 1857–1869 (2007)CrossRefGoogle Scholar
  89. 89.
    Perillo-Marcone, A., Alonso-Vazquez, A., Taylor, M.: Assessment of the effect of mesh density on the material property discretisation within QCT-based FE-models: a practical example using the implanted proximal tibia. Comput. Methods Biomech. Biomed. Eng. 6(1), 17–20 (2003)CrossRefGoogle Scholar
  90. 90.
    Capelli, C., Taylor, A.M., Migliavacca, F., Bonhoeffer, P., Schievano, S.: Patient-specific reconstructed anatomies and computer simulations are fundamental for selecting medical device treatment: application to a new percutaneous pulmonary valve. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1921), 3027–3038 (2010)Google Scholar
  91. 91.
    Reggiani, B., Cristofolini, L., Varini, E., Viceconti, M.: Predicting the subject-specific primary stability of cementless implants during pre-operative planning: preliminary validation of subject-specific finite-element models. J. Biomech. 40(11), 2552–2558 (2007)CrossRefGoogle Scholar
  92. 92.
    Khayyeri, H., Checa, S., Tägil, M., Aspenberg, P., Prendergast, P.J.: Individual-specific cell process rates explains variability in tissue differentiation experiment. In: Proceedings of the 17 Congress of the European Society of Biomechanics, European Society of Biomechanics, Edinburgh, Scotland, UK (2010); CDROMGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander B. Lennon
    • 1
  • Hanifeh Khayyeri
    • 1
  • Feng Xue
    • 1
  • Patrick J. Prendergast
    • 1
  1. 1.Trinity Centre for BioengineeringSchool of Engineering, Trinity CollegeDublin 2Ireland

Personalised recommendations