The Physical Mechanical Processes that Shape Tissues in the Early Embryo

  • Lance A. Davidson
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 4)


The morphology of a multicellular organism and its internal organs is determined by interactions between an organism’s genome and the physical properties of living matter. Recent successes in sequencing the genome have revived interest the generation of physical shape, or morphogenesis, the physical properties of living matter, and how biological and biophysical processes shape that living matter during development. One of the goals of modern developmental biology is to understand how tissues are shaped and how physiological function is initiated. Remarkable advances in cell and molecular biology have led to a wealth of data on the molecular mechanisms required during early development. More recently, developmental biologists have been turning to biophysical and bioengineering approaches to understand how embryos as well as organs are shaped by these molecular mechanisms. These studies are finding hints that mechanical processes may be playing novel roles in developing embryos in addition to their direct roles in shaping tissues. Many early molecular pathways regulating cell differentiation and embryonic morphogenesis are reused as tumors grow and metastasize and during the regeneration of injured or damaged tissues. These discoveries have attracted cancer biologists and tissue engineers to join developmental biologists in studying the mechanical processes that drive morphogenesis. In this review we will present a short primer for the engineer on developmental biology and embryonic morphogenesis and then describe experimental and theoretical approaches to investigate the physical principles of morphogenesis.


Planar Cell Polarity Epithelial Sheet Tissue Movement Cell Shape Change Morphogenetic Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by grants from the NSF (IOS-0845775) and the NIH (HD044750).


  1. 1.
    Akkas, N.: NATO advanced research workshop on biomechanics of cell division (1986: Istanbul, Turkey). In: NATO ASI series. Series A, Life Sciences, vol. 132. Plenum Press, New York (1987)Google Scholar
  2. 2.
    Akkas, N.: NATO advanced study institute on biomechanics of active movement and deformation of cells (1989: Istanbul, Turkey). In: NATO ASI series. Series H, Cell Biology, vol. 42. Springer, New York (1990)Google Scholar
  3. 3.
    Akkas, N.: Biomechanics of active cell movement and division of cells. In: NATO ASI series. Series H, Cell biology, vol. 84. Springer, New York (1994)Google Scholar
  4. 4.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular biology of the cell. Garland Science, New York (2008)Google Scholar
  5. 5.
    Beningo, K.A., Dembo, M., Kaverina, I., Small, J.V., Wang, Y.L.: Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001)Google Scholar
  6. 6.
    Bereiter-Hahn, J., Anderson, O.R., Reif, W.-E.: Cytomechanics; the mechanical basis of cell form and structure, pp. 294. Springer, New York (1987)Google Scholar
  7. 7.
    Bertet, C., Sulak, L., Lecuit, T.: Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004)Google Scholar
  8. 8.
    Blankenship, J.T., Backovic, S.T., Sanny, J.S., Weitz, O., Zallen, J.A.: Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006)Google Scholar
  9. 9.
    Bolis, L., Maddrell, S.H.P., Schmidt-Nielsen, K.: Comparative physiology: functional aspects of structural materials. In: Proceedings of the International Conference on Comparative Physiology, Ascona 1974, pp. 268. North-Holland Publications, Amsterdam (1975)Google Scholar
  10. 10.
    Bray, D.: Cell movements: from molecules to motility. Garland Publications, New York (2001)Google Scholar
  11. 11.
    Brodland, G.W.: The Differential Interfacial Tension Hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. Biomech. Eng. 124, 188–197 (2002)Google Scholar
  12. 12.
    Brodland, G.W.: Do lamellipodia have the mechanical capacity to drive convergent extension? Int. J. Dev. Biol. 50, 151–155 (2006)Google Scholar
  13. 13.
    Brodland, G.W., Veldhuis, J.H.: Lamellipodium-driven tissue reshaping: a parametric study. Comput. Methods Biomech. Biomed. Eng. 9, 17–23 (2006)Google Scholar
  14. 14.
    Brouzes, E., Farge, E.: Interplay of mechanical deformation and patterned gene expression in developing embryos. Curr. Opin. Genet. Dev. 14, 367–374 (2004)Google Scholar
  15. 15.
    Butschli, O.: Bemerkungen zur mechanishen erklarung der gastrula-invagination, vol. 4, pp. 3–13. Sitzungsberichte Akademie Wissenschaffen, Heidelberg (1915)Google Scholar
  16. 16.
    Chan, C.E., Odde, D.J.: Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008)Google Scholar
  17. 17.
    Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E.: Geometric control of cell life and death. Science 276, 1425–1428 (1997)Google Scholar
  18. 18.
    Chen, X., Brodland, G.W.: Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated. Phys. Biol. 5, 15003 (2008)Google Scholar
  19. 19.
    Chen, X., Gumbiner, B.M.: Crosstalk between different adhesion molecules. Curr. Opin. Cell Biol. 18, 572–578 (2006)Google Scholar
  20. 20.
    Cheshire, A.M., Kerman, B.E., Zipfel, W.R., Spector, A.A., Andrew, D.J.: Kinetic and mechanical analysis of live tube morphogenesis. Dev. Dyn. 237, 2874–2888 (2008)Google Scholar
  21. 21.
    Choi, C.K., Vicente-Manzanares, M., Zareno, J., Whitmore, L.A., Mogilner, A., Horwitz, A.R.: Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. (2008)Google Scholar
  22. 22.
    Cole, K.S.: Surface forces of the Arbacia egg. J. Cell Comp. Physiol. 1, 1–9 (1932)Google Scholar
  23. 23.
    Cole, K.S., Michaelis, E.M.: Surface forces of fertilized Arbacia eggs. J. Cell. Comp. Physiol. 2, 121–126 (1932)Google Scholar
  24. 24.
    Conte, V., Munoz, J.J., Baum, B., Miodownik, M.: Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes. Phys. Biol. 6, 016010 (2009)Google Scholar
  25. 25.
    Davidson, E.H., Levine, M.S.: Properties of developmental gene regulatory networks. Proc. Natl. Acad. Sci. USA 105, 20063–20066 (2008)Google Scholar
  26. 26.
    Davidson, L., Keller, R.: Measuring mechanical properties of embryos and embryonic tissues. Methods Cell Biol. 83, 425–439 (2007)Google Scholar
  27. 27.
    Davidson, L.A., Ezin, A.M., Keller, R.: Embryonic wound healing by apical contraction and ingression in Xenopus laevis. Cell Motil. Cytoskelet. 53, 163–176 (2002)Google Scholar
  28. 28.
    Davidson, L.A., Joshi, S.D., Kim, H.Y., von Dassow, M., Zhang, L., Zhou, J.: Emergent morphogenesis: elastic mechanics of a self-deforming tissue. J. Biomech. 43, 63–70 (2010)Google Scholar
  29. 29.
    Davidson, L.A., Keller, R., Desimone, D.W.: Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis. Dev. Dyn. 231, 888–895 (2004)Google Scholar
  30. 30.
    Davidson, L.A., Koehl, M.A., Keller, R., Oster, G.F.: How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 121, 2005–2018 (1995)Google Scholar
  31. 31.
    Davidson, L.A., Marsden, M., Keller, R., Desimone, D.W.: Integrin alpha5beta1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr. Biol. 16, 833–844 (2006)Google Scholar
  32. 32.
    Davidson, L.A., Oster, G.F., Keller, R.E., Koehl, M.A.: Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 209, 221–238 (1999)Google Scholar
  33. 33.
    Desprat, N., Supatto, W., Pouille, P.A., Beaurepaire, E., Farge, E.: Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell 15, 470–477 (2008)Google Scholar
  34. 34.
    Discher, D.E., Janmey, P., Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005)Google Scholar
  35. 35.
    Domingo, C., Keller, R.: Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis. Development 121, 3311–3321 (1995)Google Scholar
  36. 36.
    Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)Google Scholar
  37. 37.
    Even-Ram, S., Artym, V., Yamada, K.M.: Matrix control of stem cell fate. Cell 126, 645–647 (2006)Google Scholar
  38. 38.
    Farge, E.: Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377 (2003)Google Scholar
  39. 39.
    Farhadifar, R., Roper, J.C., Aigouy, B., Eaton, S., Julicher, F.: The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007)Google Scholar
  40. 40.
    Fernandez-Gonzalez, R., Simoes Sde, M., Roper, J.C., Eaton, S., Zallen, J.A.: Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009)Google Scholar
  41. 41.
    Forgacs, G., Newman, S.A.: Biological physics of the developing embryo. Cambridge University Press, Cambridge (2005)Google Scholar
  42. 42.
    Fristrom, D.: The cellular basis of epithelial morphogenesis: a review. Tissue Cell 20(5), 645–690 (1988)Google Scholar
  43. 43.
    Fujimori, T.: Preimplantation development of mouse: a view from cellular behavior. Dev. Growth Differ. 52, 253–262 (2010)Google Scholar
  44. 44.
    Fung, Y.C.: Biomechanics: mechanical properties of living tissues. Springer, Berlin (1981)Google Scholar
  45. 45.
    Fung, Y.C.: Biomechanics: motion, flow, stress, and growth. Springer, New York (1991)Google Scholar
  46. 46.
    Gardel, M.L., Nakamura, F., Hartwig, J.H., Crocker, J.C., Stossel, T.P., Weitz, D.A.: Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc. Natl. Acad. Sci. USA 103, 1762–1767 (2006)Google Scholar
  47. 47.
    Goto, T., Davidson, L., Asashima, M., Keller, R.: Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr. Biol. 15, 787–793 (2005)Google Scholar
  48. 48.
    Green, J.B., Davidson, L.A.: Convergent extension and the hexahedral cell. Nat. Cell Biol. 9, 1010–1015 (2007)Google Scholar
  49. 49.
    Gupton, S.L., Waterman-Storer, C.M.: Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125, 1361–1374 (2006)Google Scholar
  50. 50.
    Harris, M.J., Juriloff, D.M.: Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 79, 187–210 (2007)Google Scholar
  51. 51.
    Hayashi, T., Carthew, R.W.: Surface mechanics mediate pattern formation in the developing retina. Nature 431, 647–652 (2004)Google Scholar
  52. 52.
    Hiramoto, Y.: Mechanical properties of sea urchin eggs. II. Changes in the mechanical properties from fertilization to cleavage. Exp. Cell Res. 32, 76 (1963)Google Scholar
  53. 53.
    Hiramoto, Y.: Observations and measurements of sea urchin eggs with a centrifuge microscope. J. Cell Physiol. 69, 216–230 (1967)Google Scholar
  54. 54.
    Hiramoto, Y.: Mechanical properties of the surface of the sea urchin egg at fertilization and during cleavage. Exp. Cell Res. 89(2), 320–326 (1974)Google Scholar
  55. 55.
    Hiramoto, Y.: Determination of mechanical properties of the egg surface by elastimetry. Methods Cell Biol. 27, 435–442 (1986)Google Scholar
  56. 56.
    His, W.: Unsere korperform und das physiologische problem ihrer entstehung. F.C.W. Vogel, Leipzig (1874)Google Scholar
  57. 57.
    Howard, J.: Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland (2001)Google Scholar
  58. 58.
    Hutson, M.S., Tokutake, Y., Chang, M.S., Bloor, J.W., Venakides, S., Kiehart, D.P., Edwards, G.S.: Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145–149 (2003)Google Scholar
  59. 59.
    Hutson, M.S., Veldhuis, J., Ma, X., Lynch, H.E., Cranston, P.G., Brodland, G.W.: Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics. Biophys. J. 97, 3075–3085 (2009)Google Scholar
  60. 60.
    Huxley, T.H.: On the physical basis of life. Conn, New Haven (1870)Google Scholar
  61. 61.
    Hyodo-Miura, J., Yamamoto, T.S., Hyodo, A.C., Iemura, S., Kusakabe, M., Nishida, E., Natsume, T., Ueno, N.: XGAP, an ArfGAP, is required for polarized localization of PAR proteins and cell polarity in Xenopus gastrulation. Dev. Cell 11, 69–79 (2006)Google Scholar
  62. 62.
    Ingber, D.E.: Mechanical control of tissue morphogenesis during embryological development. Int. J. Dev. Biol. 50, 255–266 (2006)Google Scholar
  63. 63.
    Irvine, K.D., Wieschaus, E.: Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827–841 (1994)Google Scholar
  64. 64.
    Janmey, P.A., Georges, P.C., Hvidt, S.: Basic rheology for biologists. Methods Cell Biol. 83, 3–27 (2007)Google Scholar
  65. 65.
    Jiang, X., Bruzewicz, D.A., Wong, A.P., Piel, M., Whitesides, G.M.: Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. USA 102, 975–978 (2005)Google Scholar
  66. 66.
    Kalantarian, A., Ninomiya, H., Saad, S.M., David, R., Winklbauer, R., Neumann, A.W.: Axisymmetric drop shape analysis for estimating the surface tension of cell aggregates by centrifugation. Biophys. J. 96, 1606–1616 (2009)Google Scholar
  67. 67.
    Kay, B.K., Peng, H.B.: Xenopus laevis: practical uses in cell and molecular biology. Academic Press, New York (1991)Google Scholar
  68. 68.
    Keller, R., Davidson, L., Edlund, A., Elul, T., Ezin, M., Shook, D., Skoglund, P.: Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. Lond. B 355, 897–922 (2000)Google Scholar
  69. 69.
    Kilian, K.A., Bugarija, B., Lahn, B.T., Mrksich, M.: Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 107, 4872–4877 (2010)Google Scholar
  70. 70.
    Klein, S.L., Strausberg, R.L., Wagner, L., Pontius, J., Clifton, S.W., Richardson, P.: Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Dev. Dyn. 225, 384–391 (2002)Google Scholar
  71. 71.
    Koenderink, G.H., Dogic, Z., Nakamura, F., Bendix, P.M., MacKintosh, F.C., Hartwig, J.H., Stossel, T.P., Weitz, D.A.: An active biopolymer network controlled by molecular motors. Proc. Natl. Acad. Sci. USA 106, 15192–15197 (2009)Google Scholar
  72. 72.
    Kolega, J.: The role of myosin II motor activity in distributing myosin asymmetrically and coupling protrusive activity to cell translocation. Mol. Biol. Cell 17, 4435–4445 (2006)Google Scholar
  73. 73.
    Krieg, M., Arboleda-Estudillo, Y., Puech, P.H., Kafer, J., Graner, F., Muller, D.J., Heisenberg, C.P.: Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008)Google Scholar
  74. 74.
    Kumar, S., Weaver, V.M.: Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009)Google Scholar
  75. 75.
    Kurpios, N.A., Ibanes, M., Davis, N.M., Lui, W., Katz, T., Martin, J.F., Belmonte, J.C., Tabin, C.J.: The direction of gut looping is established by changes in the extracellular matrix and in cell:cell adhesion. Proc. Natl. Acad. Sci. USA 105, 8499–8506 (2008)Google Scholar
  76. 76.
    Kwan, K.M., Kirschner, M.W.: A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis. Development 132, 4599–4610 (2005)Google Scholar
  77. 77.
    Lacayo, C.I., Pincus, Z., VanDuijn, M.M., Wilson, C.A., Fletcher, D.A., Gertler, F.B., Mogilner, A., Theriot, J.A.: Emergence of large-scale cell morphology and movement from local actin filament growth dynamics. PLoS Biol. 5, e233 (2007)Google Scholar
  78. 78.
    Lander, A.D.: Morpheus unbound: reimagining the morphogen gradient. Cell 128, 245–256 (2007)Google Scholar
  79. 79.
    Lander, A.D., Nie, Q., Wan, F.Y.: Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796 (2002)Google Scholar
  80. 80.
    Lane, M.C., Keller, R.: Microtubule disruption reveals that Spemann’s Organizer is subdivided into two domains by the vegetal alignment zone. Development 124, 895–906 (1997)Google Scholar
  81. 81.
    Lauffenburger, D.A., Horwitz, A.F.: Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)Google Scholar
  82. 82.
    Lecuit, T., Lenne, P.F.: Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007)Google Scholar
  83. 83.
    Lee, J.Y., Harland, R.M.: Actomyosin contractility and microtubules drive apical constriction in Xenopus bottle cells. Dev. Biol. 311, 40–52 (2007)Google Scholar
  84. 84.
    Leptin, M., Grunewald, B.: Cell shape changes during gastrulation in Drosophila. Development 110(1), 73–84 (1990)Google Scholar
  85. 85.
    Lewis, W.H.: Mechanics of invagination. Anat. Rec. 97, 139–56 (1947)Google Scholar
  86. 86.
    Liu, W., Sato, A., Khadka, D., Bharti, R., Diaz, H., Runnels, L.W., Habas, R.: Mechanism of activation of the Formin protein Daam1. Proc. Natl. Acad. Sci. USA 105, 210–215 (2008)Google Scholar
  87. 87.
    Lo, C.M., Wang, H.B., Dembo, M., Wang, Y.L.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000)Google Scholar
  88. 88.
    Lubarsky, B., Krasnow, M.A.: Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28 (2003)Google Scholar
  89. 89.
    Ma, X., Lynch, H.E., Scully, P.C., Hutson, M.S.: Probing embryonic tissue mechanics with laser hole drilling. Phys. Biol. 6, 036004 (2009)Google Scholar
  90. 90.
    Mammoto, T., Ingber, D.E. Mechanical control of tissue and organ development. Development 137, 1407–1420Google Scholar
  91. 91.
    Martin, A.C., Kaschube, M., Wieschaus, E.F.: Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009)Google Scholar
  92. 92.
    Martin, P., Lewis, J.: Actin cables and epidermal movement in embryonic wound healing. Nature 360(6400), 179–183 (1992)Google Scholar
  93. 93.
    Miyata, H., Yoshikawa, H., Hakozaki, H., Suzuki, N., Furuno, T., Ikegami, A., Kinosita, K., Jr., Nishizaka, T., Ishiwata, S.: Mechanical measurements of single actomyosin motor force. Biophys. J. 68, 286S–289S (discussion 289S–290S) (1995).Google Scholar
  94. 94.
    Moore, A.R.: On the mechanics of gastrulation in Dendraster excentricus. J. Exp. Zool. 87, 101–111 (1941)Google Scholar
  95. 95.
    Moore, S.W.: A fiber optic system for measuring dynamic mechanical properties of embryonic tissues. IEEE Trans. Biomed. Eng. 41, 45–50 (1994)Google Scholar
  96. 96.
    Moore, S.W., Keller, R.E., Koehl, M.A.R.: The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus leavis. Development 121, 3130–3140 (1995)Google Scholar
  97. 97.
    Morgan, T.H.: Experimental embryology: Columbia University Press, New York (1927)Google Scholar
  98. 98.
    Munevar, S., Wang, Y., Dembo, M.: Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757 (2001)Google Scholar
  99. 99.
    Nakajima, Y., Burke, R.D.: The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells. Dev. Biol. 179, 436–446 (1996)Google Scholar
  100. 100.
    Nanavati, C., Fernandez, J.M.: The secretory granule matrix: a fast-acting smart polymer. Science 259, 963–965 (1993)Google Scholar
  101. 101.
    Nemer, M.: Genetic insights into normal and abnormal heart development. Cardiovasc. Pathol. 17, 48–54 (2008)Google Scholar
  102. 102.
    Niehrs, C.: On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137, 845–857 (2010)Google Scholar
  103. 103.
    NSTC: Strategies for advancing tissue science and engineering: foundation for the future, pp. 52. Washington, D.C. (2007)Google Scholar
  104. 104.
    Odell, G.M., Oster, G., Alberch, P., Burnside, B.: The mechanical basis of morphogenesis. Dev. Biol. 85, 446–462 (1981)Google Scholar
  105. 105.
    Oster, G., Weliky, M.: Morphogenesis by cell rearrangement: a computer simulation approach. Semin. Dev. Biol. 1, 313–323 (1990)Google Scholar
  106. 106.
    Paluch, E., Heisenberg, C.P.: Biology and physics of cell shape changes in development. Curr. Biol. 19, R790–R799 (2009)Google Scholar
  107. 107.
    Park, T.J., Gray, R.S., Sato, A., Habas, R., Wallingford, J.B.: Subcellular localization and signaling properties of dishevelled in developing vertebrate embryos. Curr. Biol. 15, 1039–1044 (2005)Google Scholar
  108. 108.
    Paszek, M.J., Weaver, V.M.: The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9, 325–342 (2004)Google Scholar
  109. 109.
    Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D. et al.: Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005)Google Scholar
  110. 110.
    Pelham, R.J., Jr., Wang, Y.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94, 13661–13665 (1997)Google Scholar
  111. 111.
    Peralta, X.G., Toyama, Y., Kiehart, D.P., Edwards, G.S.: Emergent properties during dorsal closure in Drosophila morphogenesis. Phys. Biol. 5, 15004 (2008)Google Scholar
  112. 112.
    Peter, I.S., Davidson, E.H.: Modularity and design principles in the sea urchin embryo gene regulatory network. FEBS Lett. 583, 3948–3958 (2009)Google Scholar
  113. 113.
    Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)Google Scholar
  114. 114.
    Ponti, A., Machacek, M., Gupton, S.L., Waterman-Storer, C.M., Danuser, G.: Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004)Google Scholar
  115. 115.
    Pouille, P.A., Ahmadi, P., Brunet, A.C., Farge, E.: Mechanical signals trigger Myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal 2, ra16 (2009)Google Scholar
  116. 116.
    Poynter, G., Huss, D., Lansford, R.: Japanese quail: an efficient animal model for the production of transgenic avians. CSH Protocol 2009, pdb emo112 (2009)Google Scholar
  117. 117.
    Quintin, S., Gally, C., Labouesse, M.: Epithelial morphogenesis in embryos: asymmetries, motors and brakes. Trends Genet. 24, 221–230 (2008)Google Scholar
  118. 118.
    Ramasubramanian, A., Latacha, K.S., Benjamin, J.M., Voronov, D.A., Ravi, A., Taber, L.A.: Computational model for early cardiac looping. Ann. Biomed. Eng. 34, 1655–1669 (2006)Google Scholar
  119. 119.
    Ramos, J.W., Whittaker, C.A., DeSimone, D.W.: Integrin-dependent adhesive activity is spatially controlled by inductive signals at gastrulation. Development 122, 2873–2883 (1996)Google Scholar
  120. 120.
    Rauzi, M., Verant, P., Lecuit, T., Lenne, P.F.: Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10, 1401–1410 (2008)Google Scholar
  121. 121.
    Rhumbler, L.: Zur mechanik des gastrulationsvorganges insbesondere der invagination. Archiv Fur Entwicklungsmechanic 14, 401–476 (1902)Google Scholar
  122. 122.
    Rodriguez-Diaz, A., Toyama, Y., Abravanel, D.L., Wiemann, J.M., Wells, A.R., Tulu, U.S., Edwards, G.S., Kiehart, D.P.: Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient. HFSP J. 2, 220–237 (2008)Google Scholar
  123. 123.
    Rolo, A., Skoglund, P., Keller, R.: Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB. Dev. Biol. 327, 327–338 (2009)Google Scholar
  124. 124.
    Sato, A., Khadka, D.K., Liu, W., Bharti, R., Runnels, L.W., Dawid, I.B., Habas, R.: Profilin is an effector for Daam1 in non-canonical Wnt signaling and is required for vertebrate gastrulation. Development 133, 4219–4231 (2006)Google Scholar
  125. 125.
    Sawyer, J.M., Harrell, J.R., Shemer, G., Sullivan-Brown, J., Roh-Johnson, M., Goldstein, B.: Apical constriction: a cell shape change that can drive morphogenesis. Dev. Biol. 341, 5–19 (2010)Google Scholar
  126. 126.
    Schoenwolf, G.C., Smith, J.L.: Epithelial cell wedging: a fundamental cell behavior contributing to hinge point formation during epithelial morphogenesis. Semin. Dev. Biol. 1, 325–334 (1990)Google Scholar
  127. 127.
    Schroeder, T.E.: Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J. Embryol. Exp. Morphol. 23(2), 427–462 (1970)Google Scholar
  128. 128.
    Schwartz, M.A., DeSimone, D.W.: Cell adhesion receptors in mechanotransduction. Curr. Opin. Cell Biol. 20, 551–556 (2008)Google Scholar
  129. 129.
    Selman, G.G.: The forces producing neural closure in amphibia. J. Embryol. Exp. Morphol. 6, 448–465 (1958)Google Scholar
  130. 130.
    Shih, J., Keller, R.: Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development 116(4), 915–930 (1992)Google Scholar
  131. 131.
    Shook, D., Keller, R.: Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech. Dev. 120, 1351–1383 (2003)Google Scholar
  132. 132.
    Sinner, D., Kirilenko, P., Rankin, S., Wei, E., Howard, L., Kofron, M., Heasman, J., Woodland, H.R., Zorn, A.M.: Global analysis of the transcriptional network controlling Xenopus endoderm formation. Development 133, 1955–1966 (2006)Google Scholar
  133. 133.
    Sive, H.L., Grainger, R.M., Harland, R.M.: Early development of Xenopus laevis: a laboratory manual, pp. 338. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2000)Google Scholar
  134. 134.
    Skoglund, P., Rolo, A., Chen, X., Gumbiner, B.M., Keller, R.: Convergence and extension at gastrulation require a myosin IIB-dependent cortical actin network. Development 135, 2435–2444 (2008)Google Scholar
  135. 135.
    Smith, J.L., Schoenwolf, G.C.: Neurulation: coming to closure. Trends Neurosci. 20, 510–517 (1997)Google Scholar
  136. 136.
    Smith, J.L., Schoenwolf, G.C., Quan, J.: Quantitative analyses of neuroepithelial cell shapes during bending of the mouse neural plate. J. Comp. Neurol. 342, 144–151 (1994)Google Scholar
  137. 137.
    Solon, J., Kaya-Copur, A., Colombelli, J., Brunner, D.: Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009)Google Scholar
  138. 138.
    Spek, J.: Differenzen im quellungszustand der plasmakolloide als eine ursache der gastrulainvagination, sowie der einstulpungen und faltungen von zellplatten uberhaupt. Kolloidchemische Beihefte 9, 259–399 (1918)Google Scholar
  139. 139.
    Stein, W.D., Bronner, F.: Cell Shape: determinants, regulation, and regulatory role. Academic Press, San Diego (1989)Google Scholar
  140. 140.
    Stern, C.D.: Gastrulation: from cells to embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2004)Google Scholar
  141. 141.
    Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M.: Direct observation of kinesin stepping by optical trapping interferometry [see comments]. Nature 365(6448), 721–727 (1993)Google Scholar
  142. 142.
    Sweeton, D., Parks, S., Costa, M., Wieschaus, E.: Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112(3), 775–789 (1991)Google Scholar
  143. 143.
    Tan, J.L., Tien, J., Pirone, D.M., Gray, D.S., Bhadriraju, K., Chen, C.S.: Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 100, 1484–1489 (2003)Google Scholar
  144. 144.
    Tanegashima, K., Zhao, H., Dawid, I.B.: WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation. Embo. J. 27, 606–617 (2008)Google Scholar
  145. 145.
    Thompson, D.A.W.: On growth and form. Cambridge University Press, London (1917)Google Scholar
  146. 146.
    Toyama, Y., Peralta, X.G., Wells, A.R., Kiehart, D.P., Edwards, G.S.: Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321, 1683–1686 (2008)Google Scholar
  147. 147.
    Trinkaus, J.P.: Cells into organs: the forces that shape the embryo. Prentice-Hall Inc., Englewood Cliffs (1984)Google Scholar
  148. 148.
    VanBuren, P., Guilford, W.H., Kennedy, G., Wu, J., Warshaw, D.M.: Smooth muscle myosin: a high force-generating molecular motor. Biophys. J. 68, 256S–258S; 258S–259S (1995)Google Scholar
  149. 149.
    Vincent, J.V.: Structural biomaterials. Princeton University Press, Princeton (1990)Google Scholar
  150. 150.
    Voiculescu, O., Bertocchini, F., Wolpert, L., Keller, R.E., Stern, C.D.: The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449, 1049–1052 (2007)Google Scholar
  151. 151.
    von Dassow, M., Davidson, L.A.: Variation and robustness of the mechanics of gastrulation: the role of tissue mechanical properties during morphogenesis. Birth Defects Res. C Embryo Today 81, 253–269 (2007)Google Scholar
  152. 152.
    von Dassow, M., Davidson, L.A.: Natural variation in embryo mechanics: gastrulation in Xenopus laevis is highly robust to variation in tissue stiffness. Dev. Dyn. 238, 2–18 (2009)Google Scholar
  153. 153.
    Waddington, C.H.: Order of magnitude of morphogenetic forces. Nature 144(3649), 637 (1939)Google Scholar
  154. 154.
    Waddington, C.H.: Observations on the forces of morphogenesis in the amphibian embryo. J. Exp. Biol. 19, 284–293 (1942)Google Scholar
  155. 155.
    Wainwright, S.A., Biggs, W.D., Currey, J.D., Gosline, J.M.: Mechanical design in organisms. Wiley, New York (1976)Google Scholar
  156. 156.
    Waitzman, N.J., Romano, P.S., Scheffler, R.M.: Estimates of the economic costs of birth defects. Inquiry 31, 188–205 (1994)Google Scholar
  157. 157.
    Wallingford, J.B., Fraser, S.E., Harland, R.M.: Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell 2, 695–706 (2002)Google Scholar
  158. 158.
    Wallingford, J.B., Rowning, B.A., Vogeli, K.M., Rothbacher, U., Fraser, S.E., Harland, R.M.: Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000)Google Scholar
  159. 159.
    Wang, H.B., Dembo, M., Wang, Y.L.: Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 279, C1345–C1350 (2000)Google Scholar
  160. 160.
    Weiser, D.C., Row, R.H., Kimelman, D.: Rho-regulated Myosin phosphatase establishes the level of protrusive activity required for cell movements during zebrafish gastrulation. Development 136, 2375–2384 (2009)Google Scholar
  161. 161.
    Weliky, M., Minsuk, S., Keller, R., Oster, G.: Notochord morphogenesis in Xenopus laevis: simulation of cell behavior underlying tissue convergence and extension. Development 113(4), 1231–1244 (1991)Google Scholar
  162. 162.
    Wiebe, C., Brodland, G.W.: Tensile properties of embryonic epithelia measured using a novel instrument. J. Biomech. 38, 2087–2094 (2005)Google Scholar
  163. 163.
    Witzel, S., Zimyanin, V., Carreira-Barbosa, F., Tada, M., Heisenberg, C.P.: Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane. J. Cell Biol. 175, 791–802 (2006)Google Scholar
  164. 164.
    Wood, W., Jacinto, A., Grose, R., Woolner, S., Gale, J., Wilson, C., Martin, P.: Wound healing recapitulates morphogenesis in Drosophila embryos. Nat. Cell Biol. 4, 907–912 (2002)Google Scholar
  165. 165.
    Wozniak, M.A., Chen, C.S.: Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009)Google Scholar
  166. 166.
    Xia, N., Thodeti, C.K., Hunt, T.P., Xu, Q., Ho, M., Whitesides, G.M., Westervelt, R., Ingber, D.E.: Directional control of cell motility through focal adhesion positioning and spatial control of Rac activation. Faseb. J. 22(6):1649–1659 (2008)Google Scholar
  167. 167.
    Xu, N., Keung, B., Myat, M.M.: Rho GTPase controls invagination and cohesive migration of the Drosophila salivary gland through Crumbs and Rho-kinase. Dev. Biol. 321, 88–100 (2008)Google Scholar
  168. 168.
    Yam, P.T., Wilson, C.A., Ji, L., Hebert, B., Barnhart, E.L., Dye, N.A., Wiseman, P.W., Danuser, G., Theriot, J.A.: Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178, 1207–1221 (2007)Google Scholar
  169. 169.
    Yamanaka, Y., Tamplin, O.J., Beckers, A., Gossler, A., Rossant, J.: Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev. Cell 13, 884–896 (2007)Google Scholar
  170. 170.
    Ybot-Gonzalez, P., Savery, D., Gerrelli, D., Signore, M., Mitchell, C.E., Faux, C.H., Greene, N.D., Copp, A.J.: Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134, 789–799 (2007)Google Scholar
  171. 171.
    Yeung, T., Georges, P.C., Flanagan, L.A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., Janmey, P.A.: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60, 24–34 (2005)Google Scholar
  172. 172.
    Yin, C., Kiskowski, M., Pouille, P.A., Farge, E., Solnica-Krezel, L.: Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J. Cell Biol. 180, 221–232 (2008)Google Scholar
  173. 173.
    Young, P.E., Pesacreta, T.C., Kiehart, D.P.: Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis. Development 111(1), 1–14 (1991)Google Scholar
  174. 174.
    Zajac, M., Jones, G.L., Glazier, J.A.: Model of convergent extension in animal morphogenesis. Phys. Rev. Lett. 85, 2022–2025 (2000)Google Scholar
  175. 175.
    Zajac, M., Jones, G.L., Glazier, J.A.: Simulating convergent extension by way of anisotropic differential adhesion. J. Theor. Biol. 222, 247–259 (2003)Google Scholar
  176. 176.
    Zamir, E.A., Taber, L.A.: Material properties and residual stress in the stage 12 chick heart during cardiac looping. J. Biomech. Eng. 126, 823–830 (2004a)Google Scholar
  177. 177.
    Zamir, E.A., Taber, L.A. On the effects of residual stress in microindentation tests of soft tissue structures. J. Biomech. Eng. Trans. Asme 126, 276–283 (2004b)Google Scholar
  178. 178.
    Zhong, Y., Brieher, W.M., Gumbiner, B.M.: Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. J. Cell Biol. 144, 351–359 (1999)Google Scholar
  179. 179.
    Zhou, J., Kim, H.Y., Davidson, L.A.: Actomyosin stiffens the vertebrate embryo during critical stages of elongation and neural tube closure. Development 136, 677–688 (2009)Google Scholar
  180. 180.
    Ziherl, P.: Aggregates of two-dimensional vesicles: rouleaux, sheets, and convergent extension. Phys. Rev. Lett. 99, 128102 (2007)Google Scholar
  181. 181.
    Zohn, I.E., Anderson, K.V., Niswander, L.: Using genomewide mutagenesis screens to identify the genes required for neural tube closure in the mouse. Birth Defects Res. A Clin. Mol. Teratol. 73, 583–590 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Departments of Bioengineering and Developmental BiologyUniversity of PittsburghPittsburghUSA

Personalised recommendations