Advertisement

Signaling C-Type Lectin Receptors in Antifungal Immunity

Chapter
  • 292 Downloads
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 429)

Abstract

We are all exposed to fungal organisms daily, and although many of these organisms are not harmful, billions of people a year contract a fungal infection. Most of these infections are not fatal and can be cleared by the host immune response. However, due to an increase in high-risk populations, the global fungal burden has increased, with more than 1.5 million deaths per year caused by invasive fungal infections. The fungal cell wall is an important surface for interacting with the host immune system as it contains pathogen-associated molecular patterns (PAMPs) which are detected as being foreign by the host pattern recognition receptors (PRRs). C-type lectin receptors are a group of PRRs that play a central role in the protection against invasive fungal infections. Following the recognition of fungal PAMPs, CLRs trigger various innate and adaptive immune responses. In this chapter, we specifically focus on C-type lectin receptors capable of activating downstream signaling pathways, resulting in protective antifungal immune responses. The current roles that these signaling CLRs play in protection against four of the most prevalent fungal infections affecting humans are reviewed. These include Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii.

Keywords

Antifungal immunity C-type lectin receptor CLRs 

Notes

Acknowledgements

MAH is supported by the National Research Foundation of South Africa and the Oppenheimer Memorial Trust; JCH is supported by the Wellcome Trust (209293) and Carnegie Corporation; GDB is supported by the Wellcome Trust and the Medical Research Council (UK) Centre for Medical Mycology.

References

  1. Alangaden GJ (2011) Nosocomial fungal infections: epidemiology, infection control, and prevention. Infect Dis Clin North Am 25(1):201–225.  https://doi.org/10.1016/j.idc.2010.11.003CrossRefGoogle Scholar
  2. Arce I, Martínez-Muñoz L, Roda-Navarro P, Fernández-Ruiz E (2004) The human C-type lectin CLECSF8 is a novel monocyte/macrophage endocytic receptor. Eur J Immunol 34(1):210–220.  https://doi.org/10.1002/eji.200324230CrossRefGoogle Scholar
  3. Ariizumi K, Shen G-L, Shikano S, Ritter R, Zukas P, Edelbaum D, Morita A, Takashima A (2000) Cloning of a second dendritic cell-associated C-type lectin (Dectin-2) and its alternatively spliced isoforms. J Biol Chem 275(16):11957–11963.  https://doi.org/10.1074/jbc.275.16.11957CrossRefGoogle Scholar
  4. Armstrong-James D, Meintjes G, Brown GD (2014) A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol 22(3):120–127.  https://doi.org/10.1016/j.tim.2014.01.001CrossRefGoogle Scholar
  5. Baddley JW, Stephens JM, Ji X, Gao X, Schlamm HT, Tarallo M (2013) Aspergillosis in Intensive Care Unit (ICU) patients: epidemiology and economic outcomes. BMC Infect Dis 13(1):29.  https://doi.org/10.1186/1471-2334-13-29CrossRefGoogle Scholar
  6. Ballou ER, Avelar GM, Childers DS, Mackie J, Bain JM, Wagener J, Kastora SL, Panea MD, Hardison SE, Walker LA, Erwig LP, Munro CA, Gow NAR, Brown GD, Maccallum DM, Brown AJP (2017) Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat Microbiol 2(2):16238.  https://doi.org/10.1038/nmicrobiol.2016.238CrossRefGoogle Scholar
  7. Barrett NA, Maekawa A, Rahman OM, Austen KF, Kanaoka Y (2009) Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J Immunol 182(2):1119–1128.  https://doi.org/10.4049/jimmunol.182.2.1119CrossRefGoogle Scholar
  8. Bashirova AA, Geijtenbeek TBH, Van Duijnhoven GCF, Van Vliet SJ, Eilering JBG, Martin MP, Wu L, Martin TD, Viebig N, Knolle PA, Kewalramani VN, Van Kooyk Y, Carrington M (2001) A dendritic cell–specific intercellular adhesion molecule 3–grabbing nonintegrin (Dc-Sign)–related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection 193 (6):671–678.  https://doi.org/10.1084/jem.193.6.671
  9. Bi L, Gojestani S, Wu W, Hsu Y-MS, Zhu J, Ariizumi K, Lin X (2010) CARD9 mediates dectin-2-induced IκBα kinase ubiquitination leading to activation of NF-κB in response to stimulation by the hyphal form of Candida albicans. J Biol Chem 285(34):25969–25977.  https://doi.org/10.1074/jbc.m110.131300CrossRefGoogle Scholar
  10. Blanco-Menéndez N, Del Fresno C, Fernandes S, Calvo E, Conde-Garrosa R, Kerr WG, Sancho D (2015) SHIP-1 couples to the dectin-1 hemITAM and selectively modulates reactive oxygen species production in dendritic cells in response to Candida albicans. J Immunol 195(9):4466–4478.  https://doi.org/10.4049/jimmunol.1402874CrossRefGoogle Scholar
  11. Bongomin F, Gago S, Oladele R, Denning D (2017) Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi 3(4):57.  https://doi.org/10.3390/jof3040057CrossRefGoogle Scholar
  12. Bonnefoy JY, Lecoanet-Henchoz S, Gauchat JF, Graber P, Aubry JP, Jeannin P, Plater-Zyberk C (1997) Structure and functions of CD23. Int Rev Immunol 16(1–2):113–128.  https://doi.org/10.3109/08830189709045705CrossRefGoogle Scholar
  13. Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6(1):33–44.  https://doi.org/10.1038/nri1745CrossRefGoogle Scholar
  14. Brown GD (2011) Innate antifungal immunity: the key role of phagocytes. Annu Rev Immunol 29(1):1–21.  https://doi.org/10.1146/annurev-immunol-030409-101229CrossRefGoogle Scholar
  15. Brown GD, Crocker PR (2016) Lectin receptors expressed on myeloid cells. Microbiol Spectr 4(5).  https://doi.org/10.1128/microbiolspec.mchd-0036-2016
  16. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012a) Hidden killers: human fungal infections. Sci Transl Med 4(165).  https://doi.org/10.1126/scitranslmed.3004404
  17. Brown GD, Denning DW, Levitz SM (2012b) Tackling human fungal infections. Science 336(6082):647–647.  https://doi.org/10.1126/science.1222236CrossRefGoogle Scholar
  18. Brown GD, Willment JA, Whitehead L (2018) C-type lectins in immunity and homeostasis. Nat Rev Immunol 18(6):374–389.  https://doi.org/10.1038/s41577-018-0004-8CrossRefGoogle Scholar
  19. Buchanan KL, Murphy JW (1998) What makes cryptococcus neoformans a pathogen? Emerg Infect Dis 4(1):71–83.  https://doi.org/10.3201/eid0401.980109CrossRefGoogle Scholar
  20. Camacho E, Vij R, Chrissian C, Prados-Rosales R, Gil D, O’Meally RN, Cordero RJB, Cole RN, McCaffery JM, Stark RE, Casadevall A (2019) The structural unit of melanin in the cell wall of the fungal pathogen Cryptococcus neoformans. J Biol Chem 294(27):10471–10489.  https://doi.org/10.1074/jbc.ra119.008684CrossRefGoogle Scholar
  21. Cambi A, Netea MG, Mora-Montes HM, Gow NAR, Hato SV, Lowman DW, Kullberg B-J, Torensma R, Williams DL, Figdor CG (2008) Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J Biol Chem 283(29):20590–20599.  https://doi.org/10.1074/jbc.m709334200CrossRefGoogle Scholar
  22. Campuzano A, Castro-Lopez N, Wozniak KL, Leopold Wager CM, Wormley FL (2017) Dectin-3 is not required for protection against Cryptococcus neoformans infection. PLoS ONE 12(1):e0169347.  https://doi.org/10.1371/journal.pone.0169347CrossRefGoogle Scholar
  23. Carrion SDJ, Leal SM, Ghannoum MA, Aimanianda V, Latgé J-P, Pearlman E (2013) The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1– and dectin-2–dependent responses and enhances fungal survival in vivo. J Immunol 191(5):2581–2588.  https://doi.org/10.4049/jimmunol.1300748CrossRefGoogle Scholar
  24. Carvalho A, Giovannini G, De Luca A, D’Angelo C, Casagrande A, Iannitti RG, Ricci G, Cunha C, Romani L (2012) Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in Mucosal candidiasis. Cell Mol Immunol 9(3):276–286.  https://doi.org/10.1038/cmi.2012.1CrossRefGoogle Scholar
  25. Casadevall A, Rosas AL, Nosanchuk JD (2000) Melanin and virulence in Cryptococcus neoformans. Curr Opin Microbiol 3(4):354–358.  https://doi.org/10.1016/s1369-5274(00)00103-xCrossRefGoogle Scholar
  26. Chabé M, Aliouat-Denis C-M, Delhaes L, Aliouat EM, Viscogliosi E, Dei-Cas E (2011) Pneumocystis: from a doubtful unique entity to a group of highly diversified fungal species. FEMS Yeast Res 11(1):2–17.  https://doi.org/10.1111/j.1567-1364.2010.00698.xCrossRefGoogle Scholar
  27. Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev MMBR 62(1)Google Scholar
  28. Chai LYA, De Boer MGJ, Van Der Velden WJFM, Plantinga TS, Van Spriel AB, Jacobs C, Halkes CJM, Vonk AG, Blijlevens NM, Van Dissel JT, Donnelly PJ, Kullberg B-J, Maertens J, Netea MG (2011) The Y238X stop codon polymorphism in the human β-glucan receptor dectin-1 and susceptibility to invasive Aspergillosis. J Infect Dis 203(5):736–743.  https://doi.org/10.1093/infdis/jiq102CrossRefGoogle Scholar
  29. Colonna M, Samaridis J, Angman L (2000) Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 30(2):697–704.  https://doi.org/10.1002/1521-4141(200002)30:2%3c697:aid-immu697%3e3.0.co;2-mCrossRefGoogle Scholar
  30. Daley D, Mani VR, Mohan N, Akkad N, Ochi A, Heindel DW, Lee KB, Zambirinis CP, Pandian GSB, Savadkar S, Torres-Hernandez A, Nayak S, Wang D, Hundeyin M, Diskin B, Aykut B, Werba G, Barilla RM, Rodriguez R, Chang S, Gardner L, Mahal LK, Ueberheide B, Miller G (2017) Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med 23(5):556–567.  https://doi.org/10.1038/nm.4314CrossRefGoogle Scholar
  31. Dan JM, Kelly RM, Lee CK, Levitz SM (2008) Role of the mannose receptor in a murine model of Cryptococcus neoformans infection. Infect Immun 76(6):2362–2367.  https://doi.org/10.1128/iai.00095-08CrossRefGoogle Scholar
  32. Denning DW (1998) Invasive Aspergillosis. Clin Infect Dis 26(4):781–803.  https://doi.org/10.1086/513943CrossRefGoogle Scholar
  33. Deslée GT, Charbonnier A-S, Hammad H, Angyalosi G, Tillie-Leblond I, Mantovani A, Tonnel AÉ-B, Pestel J (2002) Involvement of the mannose receptor in the uptake of der p 1, a major mite allergen, by human dendritic cells. J Allergy Clin Immunol 110(5):763–770.  https://doi.org/10.1067/mai.2002.129121CrossRefGoogle Scholar
  34. Drummond RA, Brown GD (2011) The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol 14(4):392–399.  https://doi.org/10.1016/j.mib.2011.07.001CrossRefGoogle Scholar
  35. Drummond RA, Dambuza IM, Vautier S, Taylor JA, Reid DM, Bain CC, Underhill DM, Masopust D, Kaplan DH, Brown GD (2016) CD4+ T-cell survival in the GI tract requires dectin-1 during fungal infection. Mucosal Immunol 9(2):492–502.  https://doi.org/10.1038/mi.2015.79CrossRefGoogle Scholar
  36. Drummond RA, Saijo S, Iwakura Y, Brown GD (2011) The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur J Immunol 41(2):276–281.  https://doi.org/10.1002/eji.201041252CrossRefGoogle Scholar
  37. Emara M, Royer P-J, Mahdavi J, Shakib F, Ghaemmaghami AM (2012) Retagging Identifies dendritic cell-specific intercellular adhesion molecule-3 (ICAM3)-grabbing non-integrin (DC-SIGN) protein as a novel receptor for a major allergen from house dust mite 287(8):5756–5763.  https://doi.org/10.1074/jbc.m111.312520
  38. Erwig LP, Gow NAR (2016) Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 14(3):163–176.  https://doi.org/10.1038/nrmicro.2015.21CrossRefGoogle Scholar
  39. Ezekowitz RA, Williams DJ, Koziel H, Armstrong MY, Warner A, Richards FF, Rose RM (1991) Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature 351(6322):155–158.  https://doi.org/10.1038/351155a0CrossRefGoogle Scholar
  40. Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, Van Spriel AB, Venselaar H, Elbers CC, Johnson MD, Cambi A, Huysamen C, Jacobs L, Jansen T, Verheijen K, Masthoff L, Morré SA, Vriend G, Williams DL, Perfect JR, Joosten LAB, Wijmenga C, Van Der Meer JWM, Adema GJ, Kullberg BJ, Brown GD, Netea MG (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361(18):1760–1767.  https://doi.org/10.1056/nejmoa0901053CrossRefGoogle Scholar
  41. Fisher CE, Hohl TM, Fan W, Storer BE, Levine DM, Zhao LP, Martin PJ, Warren EH, Boeckh M, Hansen JA (2017) Validation of single nucleotide polymorphisms in invasive aspergillosis following hematopoietic cell transplantation. Blood 129(19):2693–2701.  https://doi.org/10.1182/blood-2016-10-743294CrossRefGoogle Scholar
  42. Fraser IP, Takahashi K, Koziel H, Fardin B, Harmsen A, Ezekowitz RAB (2000) Pneumocystis carinii enhancessoluble mannose receptor production by macrophages. Microbes Infect 2(11):1305–1310.  https://doi.org/10.1016/s1286-4579(00)01283-1CrossRefGoogle Scholar
  43. Frenkel JK (1999) Pneumocystis pneumonia, an immunodeficiency-dependent disease (IDD): a critical historical overview. J Eukaryot Microbiol 46(5):89s–92sGoogle Scholar
  44. Furmonaviciene R, Ghaemmaghami AM, Boyd SE, Jones NS, Bailey K, Willis AC, Sewell HF, Mitchell DA, Shakib F (2007) The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses. Clin Exp Allergy: J Br Soc Allergy Clin Immunol 37(2):231–242CrossRefGoogle Scholar
  45. Furukawa A, Kamishikiryo J, Mori D, Toyonaga K, Okabe Y, Toji A, Kanda R, Miyake Y, Ose T, Yamasaki S, Maenaka K (2013) Structural analysis for glycolipid recognition by the C-type lectins Mincle and MCL. Proc Natl Acad Sci 110(43):17438–17443.  https://doi.org/10.1073/pnas.1312649110CrossRefGoogle Scholar
  46. Galès A, Conduché A, Bernad J, Lefevre L, Olagnier D, Béraud M, Martin-Blondel G, Linas M-D, Auwerx J, Coste A, Pipy B (2010) PPARγ controls dectin-1 expression required for host antifungal defense against Candida albicans 6(1):e1000714.  https://doi.org/10.1371/journal.ppat.1000714
  47. Garcia-Vallejo JJ, Van Kooyk Y (2013) The physiological role of DC-SIGN: a tale of mice and men. Trends Immunol 34(10):482–486.  https://doi.org/10.1016/j.it.2013.03.001CrossRefGoogle Scholar
  48. Gazi U, Rosas M, Singh S, Heinsbroek S, Haq I, Johnson S, Brown GD, Williams DL, Taylor PR, Martinez-Pomares L (2011) Fungal recognition enhances mannose receptor shedding through dectin-1 engagement. J Biol Chem 286(10):7822–7829.  https://doi.org/10.1074/jbc.m110.185025CrossRefGoogle Scholar
  49. Geijtenbeek TBH, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9(7):465–479.  https://doi.org/10.1038/nri2569CrossRefGoogle Scholar
  50. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, Bose N, Chan ASH, Magee AS, Danielson ME, Weiss A, Vasilakos JP, Underhill DM (2011) Activation of the innate immune receptor dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472(7344):471–475.  https://doi.org/10.1038/nature10071CrossRefGoogle Scholar
  51. Gorjestani S, Yu M, Tang B, Zhang D, Wang D, Lin X (2011) Phospholipase Cγ2 (PLCγ2) is key component in dectin-2 signaling pathway, mediating anti-fungal innate immune responses. J Biol Chem 286(51):43651–43659.  https://doi.org/10.1074/jbc.m111.307389CrossRefGoogle Scholar
  52. Gour N, Lajoie S, Smole U, White M, Hu D, Goddard P, Huntsman S, Eng C, Mak A, Oh S, Kim J-H, Sharma A, Plante S, Salem IH, Resch Y, Xiao X, Yao N, Singh A, Vrtala S, Chakir J, Burchard EG, Lane AP, Wills-Karp M (2018) Dysregulated invertebrate tropomyosin–dectin-1 interaction confers susceptibility to allergic diseases. Sci Immunol 3 (20):eaam9841.  https://doi.org/10.1126/sciimmunol.aam9841
  53. Gow NAR, Van De Veerdonk FL, Brown AJP, Netea MG (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10(2):112–122.  https://doi.org/10.1038/nrmicro2711CrossRefGoogle Scholar
  54. Graham LM, Brown GD (2009) The dectin-2 family of C-type lectins in immunity and homeostasis. Cytokine 48(1–2):148–155.  https://doi.org/10.1016/j.cyto.2009.07.010CrossRefGoogle Scholar
  55. Graham LM, Gupta V, Schafer G, Reid DM, Kimberg M, Dennehy KM, Hornsell WG, Guler R, Campanero-Rhodes MA, Palma AS, Feizi T, Kim SK, Sobieszczuk P, Willment JA, Brown GD (2012) The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through Syk kinase. J Biol Chem 287(31):25964–25974.  https://doi.org/10.1074/jbc.m112.384164CrossRefGoogle Scholar
  56. Griffiths JS, Thompson A, Stott M, Benny A, Lewis NA, Taylor PR, Forton J, Herrick S, Orr SJ, McGreal EP (2018) Differential susceptibility of dectin-1 isoforms to functional inactivation by neutrophil and fungal proteases. FASEB J 32(6):3385–3397.  https://doi.org/10.1096/fj.201701145RCrossRefGoogle Scholar
  57. Gringhuis SI, den Dunnen J, Litjens M, van het Hof B, van Kooyk Y, Geijtenbeek Teunis BH (2007) C-type lectin DC-SIGN modulates toll-like receptor signaling via raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26(5):605–616.  https://doi.org/10.1016/j.immuni.2007.03.012CrossRefGoogle Scholar
  58. Gringhuis SI, Wevers BA, Kaptein TM, Van Capel TMM, Theelen B, Boekhout T, De Jong EC, Geijtenbeek TBH (2011) Selective C-rel activation via Malt1 controls anti-fungal TH-17 immunity by dectin-1 and dectin-2. PLoS Pathog 7(1):e1001259.  https://doi.org/10.1371/journal.ppat.1001259CrossRefGoogle Scholar
  59. Gugnani HC (2003) Ecology and taxonomy of pathogenic aspergilli. Front Biosci 8(6):s346–357.  https://doi.org/10.2741/1002CrossRefGoogle Scholar
  60. Guo Y, Chang Q, Cheng L, Xiong S, Jia X, Lin X, Zhao X (2018) C-type lectin receptor CD23 Is required for host defense against Candida albicans and Aspergillus fumigatus infection. J Immunol 201(8):2427–2440.  https://doi.org/10.4049/jimmunol.1800620CrossRefGoogle Scholar
  61. Harris N, Super M, Rits M, Chang G, Ezekowitz RA (1992) Characterization of the murine macrophage mannose receptor: demonstration that the downregulation of receptor expression mediated by interferon-gamma occurs at the level of transcription. Blood 80(9):2363–2373CrossRefGoogle Scholar
  62. Hattori Y, Morita D, Fujiwara N, Mori D, Nakamura T, Harashima H, Yamasaki S, Sugita M (2014) Glycerol monomycolate is a novel ligand for the human, but not mouse macrophage inducible C-type lectin, Mincle. J Biol Chem 289(22):15405–15412.  https://doi.org/10.1074/jbc.m114.566489CrossRefGoogle Scholar
  63. Hefter M, Lother J, Weiß E, Schmitt AL, Fliesser M, Einsele H, Loeffler J (2017) Human primary myeloid dendritic cells interact with the opportunistic fungal pathogen Aspergillus fumigatusvia the C-type lectin receptor Dectin-1. Medical Mycology:myw105.  https://doi.org/10.1093/mmy/myw105
  64. Heilmann CJ, Sorgo AG, Siliakus AR, Dekker HL, Brul S, De Koster CG, De Koning LJ, Klis FM (2011) Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology 157(8):2297–2307.  https://doi.org/10.1099/mic.0.049395-0CrossRefGoogle Scholar
  65. Heinsbroek SEM, Taylor PR, Martinez FO, Martinez-Pomares L, Brown GD, Gordon S (2008) Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog 4(11):e1000218.  https://doi.org/10.1371/journal.ppat.1000218CrossRefGoogle Scholar
  66. Heinsbroek SEM, Taylor PR, Rosas M, Willment JA, Williams DL, Gordon S, Brown GD (2006) Expression of functionally different dectin-1 isoforms by Murine macrophages. J Immunol 176(9):5513–5518.  https://doi.org/10.4049/jimmunol.176.9.5513CrossRefGoogle Scholar
  67. Hernanz-Falcón P, Joffre O, Williams DL, Reis e Sousa C (2009) Internalization of dectin-1 terminates induction of inflammatory responses. Eur J Immunol 39 (2):507–513.  https://doi.org/10.1002/eji.200838687
  68. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK (2008) Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006–2007. Infect Control Hosp Epidemiol 29(11):996–1011.  https://doi.org/10.1086/591861CrossRefGoogle Scholar
  69. Hoving JC, Wilson GJ, Brown GD (2014) Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol 16(2):185–194.  https://doi.org/10.1111/cmi.12249CrossRefGoogle Scholar
  70. Hu X-P, Wang R-Y, Wang X, Cao Y-H, Chen Y-Q, Zhao H-Z, Wu J-Q, Weng X-H, Gao X-H, Sun R-H, Zhu L-P (2015) Dectin-2 polymorphism associated with pulmonary cryptococcosis in HIV-uninfected Chinese patients. Med Mycol 53(8):810–816.  https://doi.org/10.1093/mmy/myv043CrossRefGoogle Scholar
  71. Huang H-R, Li F, Han H, Xu X, Li N, Wang S, Xu J-F, Jia X-M (2018) Dectin-3 recognizes glucuronoxylomannan of Cryptococcus neoformans serotype AD and Cryptococcus gattii serotype B to initiate host defense against cryptococcosis. Front Immunol 9:1781CrossRefGoogle Scholar
  72. Ifrim DC, Bain JM, Reid DM, Oosting M, Verschueren I, Gow NAR, Van Krieken JH, Brown GD, Kullberg BJ, Joosten LAB, Van Der Meer JWM, Koentgen F, Erwig LP, Quintin J, Netea MG (2014) Role of dectin-2 for host defense against systemic infection with Candida glabrata 82(3):1064–1073.  https://doi.org/10.1128/iai.01189-13
  73. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, Rotter JI, Wang HL, McGovern DPB, Brown GD, Underhill DM (2012) Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science 336(6086):1314–1317.  https://doi.org/10.1126/science.1221789CrossRefGoogle Scholar
  74. Iliev ID, Leonardi I (2017) Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat Rev Immunol 17(10):635–646.  https://doi.org/10.1038/nri.2017.55CrossRefGoogle Scholar
  75. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206(13):2879–2888.  https://doi.org/10.1084/jem.20091750CrossRefGoogle Scholar
  76. Ishikawa T, Itoh F, Yoshida S, Saijo S, Matsuzawa T, Gonoi T, Saito T, Okawa Y, Shibata N, Miyamoto T, Yamasaki S (2013) Identification of distinct ligands for the C-type lectin receptors mincle and dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe 13(4):477–488.  https://doi.org/10.1016/j.chom.2013.03.008CrossRefGoogle Scholar
  77. Janeway CA (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13(1):11–16.  https://doi.org/10.1016/0167-5699(92)90198-GCrossRefGoogle Scholar
  78. Kaisar MMM, Ritter M, Del Fresno C, Jónasdóttir HS, Van Der Ham AJ, Pelgrom LR, Schramm G, Layland LE, Sancho D, Prazeres Da Costa C, Giera M, Yazdanbakhsh M, Everts B (2018) Dectin-1/2–induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses. PLoS Biol 16(4):e2005504.  https://doi.org/10.1371/journal.pbio.2005504CrossRefGoogle Scholar
  79. Kashem SW, Igyártó BZ, Gerami-Nejad M, Kumamoto Y, Mohammed J, Jarrett E, Drummond RA, Zurawski SM, Zurawski G, Berman J, Iwasaki A, Brown GD, Kaplan DH (2015) Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42(2):356–366.  https://doi.org/10.1016/j.immuni.2015.01.008CrossRefGoogle Scholar
  80. Kerrigan AM, Brown GD (2011) Syk-coupled C-type lectins in immunity. Trends Immunol 32(4):151–156.  https://doi.org/10.1016/j.it.2011.01.002CrossRefGoogle Scholar
  81. Kerscher B, Wilson GJ, Reid DM, Mori D, Taylor JA, Besra GS, Yamasaki S, Willment JA, Brown GD (2016) Mycobacterial receptor, Clec4d (CLECSF8, MCL), is coregulated with Mincle and upregulated on mouse myeloid cells following microbial challenge. Eur J Immunol 46(2):381–389.  https://doi.org/10.1002/eji.201545858CrossRefGoogle Scholar
  82. Kijimoto-Ochiai S (2002) CD23 (the low-affinity IgE receptor) as a C-type lectin: a multidomain and multifunctional molecule. Cell Mol Life Sci (CMLS) 59(4):648–664.  https://doi.org/10.1007/s00018-002-8455-1CrossRefGoogle Scholar
  83. Koppel EA, Van Gisbergen KPJM, Geijtenbeek TBH, Van Kooyk Y (2004) Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation 7 (2):157–165.  https://doi.org/10.1111/j.1462-5822.2004.00480.x
  84. Kottom TJ, Hebrink DM, Jenson PE, Marsolek PL, Wüthrich M, Wang H, Klein B, Yamasaki S, Limper AH (2018) Dectin-2 is a C-type lectin receptor that recognizes pneumocystis and participates in innate immune responses. Am J Respir Cell Mol Biol 58(2):232–240.  https://doi.org/10.1165/rcmb.2016-0335ocCrossRefGoogle Scholar
  85. Kottom TJ, Hebrink DM, Jenson PE, Nandakumar V, Wüthrich M, Wang H, Klein B, Yamasaki S, Lepenies B, Limper AH (2017) The interaction of pneumocystis with the C-type lectin receptor mincle exerts a significant role in host defense against infection.1600744.  https://doi.org/10.4049/jimmunol.1600744
  86. Kottom TJ, Hebrink DM, Monteiro JT, Lepenies B, Carmona EM, Wuethrich M, Santo Dias LD, Limper AH (2019) Myeloid C-type lectin receptors that recognize fungal mannans interact with Pneumocystis organisms and major surface glycoprotein. J Med Microbiol 68(11):1649–1654.  https://doi.org/10.1099/jmm.0.001062CrossRefGoogle Scholar
  87. Kousha M, Tadi R, Soubani AO (2011) Pulmonary aspergillosis: a clinical review. Eur Resp Rev 20(121):156–174.  https://doi.org/10.1183/09059180.00001011CrossRefGoogle Scholar
  88. Koziel H, Eichbaum Q, Kruskal BA, Pinkston P, Rogers RA, Armstrong MY, Richards FF, Rose RM, Ezekowitz RA (1998) Reduced binding and phagocytosis of Pneumocystis carinii by alveolar macrophages from persons infected with HIV-1 correlates with mannose receptor downregulation 102 (7):1332–1344.  https://doi.org/10.1172/jci560
  89. Krutzik SR, Tan B, Li H, Ochoa MT, Liu PT, Sharfstein SE, Graeber TG, Sieling PA, Liu Y-J, Rea TH, Bloom BR, Modlin RL (2005) TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 11(6):653–660.  https://doi.org/10.1038/nm1246CrossRefGoogle Scholar
  90. Lasbury ME, Lin P, Tschang D, Durant PJ, Lee CH (2004) Effect of bronchoalveolar lavage fluid from Pneumocystis carinii—infected hosts on phagocytic activity of alveolar macrophages. Infect Immunity 72(4):2140–2147.  https://doi.org/10.1128/iai.72.4.2140-2147.2004CrossRefGoogle Scholar
  91. Latgé J-P, Chamilos G (2019) Aspergillus fumigatus and Aspergillosis in 2019. Clin Microbiol Rev 33(1):e00140–00118.  https://doi.org/10.1128/CMR.00140-18CrossRefGoogle Scholar
  92. Le Cabec V, Emorine LJ, Toesca I, Cougoule C, Maridonneau-Parini I (2005) The human macrophage mannose receptor is not a professional phagocytic receptor. J Leukoc Biol 77(6):934–943.  https://doi.org/10.1189/jlb.1204705CrossRefGoogle Scholar
  93. Leal SM, Cowden S, Hsia Y-C, Ghannoum MA, Momany M, Pearlman E (2010) Distinct roles for dectin-1 and TLR4 in the pathogenesis of Aspergillus fumigatus keratitis. PLoS Pathog 6(7):e1000976.  https://doi.org/10.1371/journal.ppat.1000976CrossRefGoogle Scholar
  94. Lee SJ, Zheng NY, Clavijo M, Nussenzweig MC (2003) Normal host defense during systemic Candidiasis in mannose receptor-deficient mice. Infect Immun 71(1):437–445.  https://doi.org/10.1128/iai.71.1.437-445.2003CrossRefGoogle Scholar
  95. Lefèvre L, Lugo-Villarino G, Meunier E, Valentin A, Olagnier D, Authier H, Duval C, Dardenne C, Bernad J, Jean Auwerx J, Neyrolles O, Pipy B, Coste A (2013) The C-type lectin receptors dectin-1, MR, and SIGNR3 contribute both positively and negatively to the macrophage response to Leishmania infantum. Immunity 38(5):1038–1049.  https://doi.org/10.1016/j.immuni.2013.04.010CrossRefGoogle Scholar
  96. Li L-Y, Zhang H-R, Jiang Z-L, Chang Y-Z, Shao C-Z (2018) Overexpression of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin in dendritic cells protecting against aspergillosis. Chin Med J 131(21)Google Scholar
  97. Lim J, Coates CJ, Seoane PI, Garelnabi M, Taylor-Smith LM, Monteith P, Macleod CL, Escaron CJ, Brown GD, Hall RA, May RC (2018) Characterizing the mechanisms of nonopsonic uptake of cryptococci by macrophages. J Immunol 200(10):3539–3546.  https://doi.org/10.4049/jimmunol.1700790CrossRefGoogle Scholar
  98. Lima-Junior DS, Mineo TWP, Calich VLG, Zamboni DS (2017) Dectin-1 activation during leishmania amazonensis phagocytosis prompts Syk-dependent reactive oxygen species production to trigger inflammasome assembly and restriction of parasite replication. J Immunol 199(6):2055–2068.  https://doi.org/10.4049/jimmunol.1700258CrossRefGoogle Scholar
  99. Limon JJ, Skalski JH, Underhill DM (2017) Commensal fungi in health and disease. Cell Host Microbe 22(2):156–165.  https://doi.org/10.1016/j.chom.2017.07.002CrossRefGoogle Scholar
  100. Lobato-Pascual A, Saether PC, Fossum S, Dissen E, Daws MR (2013) Mincle, the receptor for mycobacterial cord factor, forms a functional receptor complex with MCL and FcεRI-γ. Eur J Immunol 43(12):3167–3174.  https://doi.org/10.1002/eji.201343752CrossRefGoogle Scholar
  101. Loures FV, Röhm M, Lee CK, Santos E, Wang JP, Specht CA, Calich VLG, Urban CF, Levitz SM (2015) Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps 11(2):e1004643.  https://doi.org/10.1371/journal.ppat.1004643
  102. Lowman DW, Greene RR, Bearden DW, Kruppa MD, Pottier M, Monteiro MA, Soldatov DV, Ensley HE, Cheng S-C, Netea MG, Williams DL (2014) Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. J Biol Chem 289(6):3432–3443.  https://doi.org/10.1074/jbc.m113.529131CrossRefGoogle Scholar
  103. Ma L, Chen Z, Huang DW, Kutty G, Ishihara M, Wang H, Abouelleil A, Bishop L, Davey E, Deng R, Deng X, Fan L, Fantoni G, Fitzgerald M, Gogineni E, Goldberg JM, Handley G, Hu X, Huber C, Jiao X, Jones K, Levin JZ, Liu Y, Macdonald P, Melnikov A, Raley C, Sassi M, Sherman BT, Song X, Sykes S, Tran B, Walsh L, Xia Y, Yang J, Young S, Zeng Q, Zheng X, Stephens R, Nusbaum C, Birren BW, Azadi P, Lempicki RA, Cuomo CA, Kovacs JA (2016) Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat Commun 7(1):10740.  https://doi.org/10.1038/ncomms10740CrossRefGoogle Scholar
  104. Maldonado SG, Dai J, Singh S, Mwangi D, Rivera A, Fitzgerald-Bocarsly P (2015) Human pDCs express the C-type lectin receptor dectin-1 and uptake and kill Aspergillus fumigatus spores in vitro (MPF4P.734). J Immunol 194Google Scholar
  105. Mansour MK, Latz E, Levitz SM (2006) Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J Immunol 176(5):3053–3061.  https://doi.org/10.4049/jimmunol.176.5.3053CrossRefGoogle Scholar
  106. Marakalala MJ, Vautier S, Potrykus J, Walker LA, Shepardson KM, Hopke A, Mora-Montes HM, Kerrigan A, Netea MG, Murray GI, Maccallum DM, Wheeler R, Munro CA, Gow NAR, Cramer RA, Brown AJP, Brown GD (2013) Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1 9(4):e1003315.  https://doi.org/10.1371/journal.ppat.1003315
  107. Martinez-Pomares L (2012) The mannose receptor. J Leukoc Biol 92(6):1177–1186.  https://doi.org/10.1189/jlb.0512231CrossRefGoogle Scholar
  108. Maruyama K, Takayama Y, Kondo T, Ishibashi K-I, Sahoo BR, Kanemaru H, Kumagai Y, Martino MM, Tanaka H, Ohno N, Iwakura Y, Takemura N, Tominaga M, Akira S (2017) Nociceptors boost the resolution of fungal osteoinflammation via the TRP channel-CGRP-Jdp2 axis. Cell Rep 19(13):2730–2742.  https://doi.org/10.1016/j.celrep.2017.06.002CrossRefGoogle Scholar
  109. McGreal EP, Rosas M, Brown GD, Zamze S, Wong SYC, Gordon S, Martinez-Pomares L, Taylor PR (2006) The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 16(5):422–430.  https://doi.org/10.1093/glycob/cwj077CrossRefGoogle Scholar
  110. McKenzie EJ, Taylor PR, Stillion RJ, Lucas AD, Harris J, Gordon S, Martinez-Pomares L (2007) Mannose receptor expression and function define a new population of murine dendritic cells. J Immunol 178(8):4975–4983.  https://doi.org/10.4049/jimmunol.178.8.4975CrossRefGoogle Scholar
  111. Medrano FJ, Montes-Cano M, Conde M, Conde, de la Horra C, Respaldiza N, Gasch A, Perez-Lozano M, Varela JM, Calderon EJ (2005) Pneumocystis jirovecii in general population. Emerg Infect Dis J 11(2):245.  https://doi.org/10.3201/eid1102.040487
  112. Mezger M, Kneitz S, Wozniok I, Kurzai O, Einsele H, Loeffler J (2008) Proinflammatory response of immature human dendritic cells is mediated by dectin-1 after exposure to Aspergillus fumigatus germ tubes. J Infect Dis 197(6):924–931.  https://doi.org/10.1086/528694CrossRefGoogle Scholar
  113. Miyake Y, Oh-Hora M, Yamasaki S (2015) C-type lectin receptor MCL facilitates mincle expression and signaling through complex formation. J Immunol 194(11):5366–5374.  https://doi.org/10.4049/jimmunol.1402429CrossRefGoogle Scholar
  114. Miyake Y, Toyonaga K, Mori D, Kakuta S, Hoshino Y, Oyamada A, Yamada H, Ono K-I, Suyama M, Iwakura Y, Yoshikai Y, Yamasaki S (2013) C-type lectin MCL Is an FcRγ-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor. Immunity 38(5):1050–1062.  https://doi.org/10.1016/j.immuni.2013.03.010CrossRefGoogle Scholar
  115. Mossalayi MD, Vouldoukis I, Mamani-Matsuda M, Kauss T, Guillon J, Maugein J, Moynet D, Rambert JRM, Desplat V, Mazier D, Vincendeau P, Malvy D (2009) CD23 mediates antimycobacterial activity of human macrophages. Infect Immun 77(12):5537–5542.  https://doi.org/10.1128/iai.01457-08CrossRefGoogle Scholar
  116. Mukaremera L, Lee KK, Wagener J, Wiesner DL, Gow NAR, Nielsen K (2018) Titan cell production in Cryptococcus neoformans reshapes the cell wall and capsule composition during infection. The Cell Surf.  https://doi.org/10.1016/j.tcsw.2017.12.001CrossRefGoogle Scholar
  117. Nakamura K, Kinjo T, Saijo S, Miyazato A, Adachi Y, Ohno N, Fujita J, Kaku M, Iwakura Y, Kawakami K (2007) Dectin-1 is not required for the host defense to Cryptococcus neoformans. Microbiol Immunol 51(11):1115–1119.  https://doi.org/10.1111/j.1348-0421.2007.tb04007.xCrossRefGoogle Scholar
  118. Nakamura Y, Sato K, Yamamoto H, Matsumura K, Matsumoto I, Nomura T, Miyasaka T, Ishii K, Kanno E, Tachi M, Yamasaki S, Saijo S, Iwakura Y, Kawakami K (2015) Dectin-2 deficiency promotes Th2 response and mucin production in the lungs after pulmonary infection with Cryptococcus neoformans. Infect Immun 83(2):671–681.  https://doi.org/10.1128/iai.02835-14CrossRefGoogle Scholar
  119. Netea MG (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and toll-like receptors. J Clin Invest 116(6):1642–1650.  https://doi.org/10.1172/jci27114CrossRefGoogle Scholar
  120. Netea MG, Gow NAR, Joosten LAB, Verschueren I, Van Der Meer JWM, Kullberg BJ (2010) Variable recognition of Candida albicansstrains by TLR4 and lectin recognition receptors. Med Mycol 48(7):897–903.  https://doi.org/10.3109/13693781003621575CrossRefGoogle Scholar
  121. Nollstadt KH, Powles MA, Fujioka H, Aikawa M, Schmatz DM (1994) Use of beta-1,3-glucan-specific antibody to study the cyst wall of Pneumocystis carinii and effects of pneumocandin B0 analog L-733,560 38(10):2258–2265.  https://doi.org/10.1128/aac.38.10.2258
  122. Norimoto A, Hirose K, Iwata A, Tamachi T, Yokota M, Takahashi K, Saijo S, Iwakura Y, Nakajima H (2014) Dectin-2 promotes house dust mite-induced Th2 and Th17 cell differentiation and allergic airway inflammation in mice. Am J Resp Cell Mol Biol 140303075636004.  https://doi.org/10.1165/rcmb.2013-0522oc
  123. O’Riordan DM, Standing JE, Limper AH (1995) Pneumocystis carinii glycoprotein A binds macrophage mannose receptors. Infect Immun 63(3):779–784CrossRefGoogle Scholar
  124. Park CG, Takahara K, Umemoto E, Yashima Y, Matsubara K, Matsuda Y, Clausen BE, Inaba K, Steinman RM (2001) Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN. Int Immunol 13(10):1283–1290.  https://doi.org/10.1093/intimm/13.10.1283CrossRefGoogle Scholar
  125. Parsons MW, Li L, Wallace AM, Lee MJ, Katz HR, Fernandez JM, Saijo S, Iwakura Y, Austen KF, Kanaoka Y, Barrett NA (2014) Dectin-2 regulates the effector phase of house dust mite-elicited pulmonary inflammation independently from its role in sensitization. J Immunol 192(4):1361–1371.  https://doi.org/10.4049/jimmunol.1301809CrossRefGoogle Scholar
  126. Patin EC, Orr SJ, Schaible UE (2017) Macrophage inducible C-type lectin as a multifunctional player in immunity. Front Immunol 8:861CrossRefGoogle Scholar
  127. Perfect JR (2005) Cryptococcus neoformans: a sugar-coated killer with designer genes. FEMS Immunol Med Microbiol 45(3):395–404.  https://doi.org/10.1016/j.femsim.2005.06.005CrossRefGoogle Scholar
  128. Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45(4):321–346.  https://doi.org/10.1080/13693780701218689CrossRefGoogle Scholar
  129. Pinke KH, Lima HGD, Cunha FQ, Lara VS (2016) Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and dectin-1 221(2):220–227.  https://doi.org/10.1016/j.imbio.2015.09.004
  130. Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, Vanhoutte L, Neyt K, Killeen N, Malissen B, Hammad H, Bart (2013) Conventional and monocyte-derived CD11b + dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38(2):322–335.  https://doi.org/10.1016/j.immuni.2012.10.016
  131. Plantinga TS, van der Velden WJFM, Ferwerda B, van Spriel AB, Adema G, Feuth T, Donnelly JP, Brown GD, Kullberg B-J, Blijlevens NMA, Netea MG (2009) Early stop polymorphism in human DECTIN-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clin Infect Dis 49(5):724–732.  https://doi.org/10.1086/604714CrossRefGoogle Scholar
  132. Porcaro I, Vidal M, Jouvert S, Stahl PD, Giaimis J (2003) Mannose receptor contribution to Candida albicansphagocytosis by murine E-clone J774 macrophages. J Leukoc Biol 74(2):206–215.  https://doi.org/10.1189/jlb.1202608CrossRefGoogle Scholar
  133. Powlesland AS, Ward EM, Sadhu SK, Guo Y, Taylor ME, Drickamer K (2006) Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins. J Biol Chem 281(29):20440–20449.  https://doi.org/10.1074/jbc.m601925200CrossRefGoogle Scholar
  134. Rajaram MVS, Arnett E, Azad AK, Guirado E, Ni B, Gerberick AD, He L-Z, Keler T, Thomas LJ, Lafuse WP, Schlesinger LS (2017) M.tuberculosis—initiated human mannose receptor signaling regulates macrophage recognition and vesicle trafficking by FcRγ-chain, Grb2, and SHP-1. Cell Rep 21 (1):126–140.  https://doi.org/10.1016/j.celrep.2017.09.034
  135. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, Denning DW, Loyse A, Boulware DR (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17(8):873–881.  https://doi.org/10.1016/s1473-3099(17)30243-8CrossRefGoogle Scholar
  136. Ritter M, Gross O, Kays S, Ruland J, Nimmerjahn F, Saijo S, Tschopp J, Layland LE, Prazeres Da Costa C (2010) Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. Proc Natl Acad Sci 107(47):20459–20464.  https://doi.org/10.1073/pnas.1010337107CrossRefGoogle Scholar
  137. Rivera A, Hohl TM, Collins N, Leiner I, Gallegos A, Saijo S, Coward JW, Iwakura Y, Pamer EG (2011) Dectin-1 diversifies Aspergillus fumigatus–specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation. J Exp Med 208(2):369–381.  https://doi.org/10.1084/jem.20100906CrossRefGoogle Scholar
  138. Rizzetto L, Weil T, Cavalieri D (2015) Systems level dissection of Candida recognition by dectins: a matter of fungal morphology and site of infection. Pathogens 4(3):639–661.  https://doi.org/10.3390/pathogens4030639CrossRefGoogle Scholar
  139. Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11(4):275–288.  https://doi.org/10.1038/nri2939CrossRefGoogle Scholar
  140. Royer PJ, Emara M, Yang C, Al-Ghouleh A, Tighe P, Jones N, Sewell HF, Shakib F, Martinez-Pomares L, Ghaemmaghami AM (2010) The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity 185(3):1522–1531.  https://doi.org/10.4049/jimmunol.1000774CrossRefGoogle Scholar
  141. Saijo S, Fujikado N, Furuta T, Chung S-h, Kotaki H, Seki K, Sudo K, Akira S, Adachi Y, Ohno N, Kinjo T, Nakamura K, Kawakami K, Iwakura Y (2007) Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 8(1):39–46.  https://doi.org/10.1038/ni1425CrossRefGoogle Scholar
  142. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, Fujikado N, Kusaka T, Kubo S, Chung S-H, Komatsu R, Miura N, Adachi Y, Ohno N, Shibuya K, Yamamoto N, Kawakami K, Yamasaki S, Saito T, Akira S, Iwakura Y (2010) Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32(5):681–691.  https://doi.org/10.1016/j.immuni.2010.05.001CrossRefGoogle Scholar
  143. Sainz J, Lupiáñez CB, Segura-Catena J, Vazquez L, Ríos R, Oyonarte S, Hemminki K, Försti A, Jurado M (2012) Dectin-1 and DC-SIGN polymorphisms associated with invasive pulmonary Aspergillosis infection. PLoS ONE 7(2):e32273.  https://doi.org/10.1371/journal.pone.0032273CrossRefGoogle Scholar
  144. Sancho D, Reis e Sousa C (2012) Signaling by Myeloid C-type lectin receptors in immunity and homeostasis. Ann Rev Immunol 30 (1):491–529.  https://doi.org/10.1146/annurev-immunol-031210-101352
  145. Sato K, Yang X-L, Yudate T, Chung J-S, Wu J, Luby-Phelps K, Kimberly RP, Underhill D, Cruz PD, Ariizumi K (2006) Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor γ chain to induce innate immune responses. J Biol Chem 281(50):38854–38866.  https://doi.org/10.1074/jbc.m606542200CrossRefGoogle Scholar
  146. Sattler S, Reiche D, Sturtzel C, Karas I, Richter S, Kalb ML, Gregor W, Hofer E (2012) The human C-type lectin-like receptor CLEC-1 is upregulated by TGF-β and primarily localized in the endoplasmic membrane compartment. Scand J Immunol 75(3):282–292.  https://doi.org/10.1111/j.1365-3083.2011.02665.xCrossRefGoogle Scholar
  147. Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2(5):1053–1060.  https://doi.org/10.1128/ec.2.5.1053-1060.2003CrossRefGoogle Scholar
  148. Schop J (2007) Protective immunity against cryptococcus neoformans infection. Mcgill J Med 10(1):35–43Google Scholar
  149. Schweneker K, Gorka O, Schweneker M, Poeck H, Tschopp J, Peschel C, Ruland J, Gross O (2013) The mycobacterial cord factor adjuvant analogue trehalose-6,6’-dibehenate (TDB) activates the Nlrp3 inflammasome. Immunobiology 218(4):664–673.  https://doi.org/10.1016/j.imbio.2012.07.029CrossRefGoogle Scholar
  150. Serrano-Gómez D, Antonio Leal J, Corbí AL (2005) DC-SIGN mediates the binding of Aspergillus fumigatus and keratinophylic fungi by human dendritic cells. Immunobiology 210(2–4):175–183.  https://doi.org/10.1016/j.imbio.2005.05.011CrossRefGoogle Scholar
  151. Serrano-Gómez D, Domínguez-Soto A, Ancochea J, Jimenez-Heffernan JA, Leal JA, Corbí AL (2004) Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol 173(9):5635–5643.  https://doi.org/10.4049/jimmunol.173.9.5635CrossRefGoogle Scholar
  152. Shiokawa M, Yamasaki S, Saijo S (2017) C-type lectin receptors in anti-fungal immunity. Curr Opin Microbiol 40:123–130.  https://doi.org/10.1016/j.mib.2017.11.004CrossRefGoogle Scholar
  153. Skalski JH, Kottom TJ, Limper AH (2015) Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction. FEMS Yeast Res 15(6).  https://doi.org/10.1093/femsyr/fov046
  154. Sloan D, Parris V (2014) Cryptococcal meningitis: epidemiology and therapeutic options. Clin Epidemiol 169.  https://doi.org/10.2147/clep.s38850
  155. Sobanov Y, Bernreiter A, Derdak S, Mechtcheriakova D, Schweighofer B, Düchler M, Kalthoff F, Hofer E (2001) A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur J Immunol 31(12):3493–3503.  https://doi.org/10.1002/1521-4141(200112)31:12%3c3493:aid-immu3493%3e3.0.co;2-9CrossRefGoogle Scholar
  156. Soilleux EJ, Barten R, Trowsdale J (2000) Cutting edge: DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13 165(6):2937–2942.  https://doi.org/10.4049/jimmunol.165.6.2937
  157. Stappers MHT, Clark AE, Aimanianda V, Bidula S, Reid DM, Asamaphan P, Hardison SE, Dambuza IM, Valsecchi I, Kerscher B, Plato A, Wallace CA, Yuecel R, Hebecker B, Da Glória Teixeira Sousa M, Cunha C, Liu Y, Feizi T, Brakhage AA, Kwon-Chung KJ, Gow NAR, Zanda M, Piras M, Zanato C, Jaeger M, Netea MG, Van De Veerdonk FL, Lacerda JF, Campos A, Carvalho A, Willment JA, Latgé J-P, Brown GD (2018) Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature 555(7696):382–386.  https://doi.org/10.1038/nature25974
  158. Steele C, Marrero L, Swain S, Harmsen AG, Zheng M, Brown GD, Gordon S, Shellito JE, Kolls JK (2003) Alveolar macrophage–mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the dectin-1 β-glucan receptor 198(11):1677–1688.  https://doi.org/10.1084/jem.20030932
  159. Stehle SE, Rogers RA, Harmsen AG, Ezekowitz RAB (2000) A soluble mannose receptor immunoadhesin enhances phagocytosis of Pneumocystis carinii by human polymorphonuclear leukocytes in vitro. Scand JImmunol 52:131–137Google Scholar
  160. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292.  https://doi.org/10.1084/jem.176.1.287CrossRefGoogle Scholar
  161. Strasser D, Neumann K, Bergmann H, Mohlopheni Guler R, Rojowska A, Hopfner K-P, Brombacher F, Urlaub H, Baier G, Gordon Leitges M, Ruland J (2012) Syk kinase-coupled C-type lectin receptors engage protein kinase C-δ to elicit Card9 adaptor-mediated innate immunity. Immunity 36(1):32–42.  https://doi.org/10.1016/j.immuni.2011.11.015CrossRefGoogle Scholar
  162. Stringer JR, Beard CB, Miller RF, Wakefield AE (2002) A new name for Pneumocystis from humans and new perspectives on the host-pathogen relationship. Emerg Infect Dis 8(9):891–896.  https://doi.org/10.3201/eid0809.020096CrossRefGoogle Scholar
  163. Sun H, Xu X-Y, Shao H-T, Su X, Wu X-D, Wang Q, Shi Y (2013) Dectin-2 is predominately macrophage restricted and exhibits conspicuous expression during Aspergillus fumigatus invasion in human lung. Cell Immunol 284(1–2):60–67.  https://doi.org/10.1016/j.cellimm.2013.06.013CrossRefGoogle Scholar
  164. Sun WK, Lu X, Li X, Sun QY, Su X, Song Y, Sun HM, Shi Y (2012) Dectin-1 is inducible and plays a crucial role in Aspergillus-induced innate immune responses in human bronchial epithelial cells. Eur J Clin Microbiol Infect Dis 31(10):2755–2764.  https://doi.org/10.1007/s10096-012-1624-8CrossRefGoogle Scholar
  165. Swain SD, Lee SJ, Nussenzweig MC, Harmsen AG (2003) Absence of the macrophage mannose receptor in mice does not increase susceptibility to Pneumocystis carinii infection in vivo. Infect Immun 71(11):6213–6221.  https://doi.org/10.1128/iai.71.11.6213-6221.2003CrossRefGoogle Scholar
  166. Syme RM, Spurrell JCL, Amankwah EK, Green FHY, Mody CH (2002) Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fc receptor II for presentation to T lymphocytes. Infect Immun 70(11):5972–5981.  https://doi.org/10.1128/iai.70.11.5972-5981.2002CrossRefGoogle Scholar
  167. Taylor ME, Conary JT, Lennartz MR, Stahl PD, Drickamer K (1990) Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem 265(21):12156–12162Google Scholar
  168. Taylor PR, Reid DM, Heinsbroek SEM, Brown GD, Gordon S, Wong SYC (2005) Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicitedin vivo. Eur J Immunol 35(7):2163–2174.  https://doi.org/10.1002/eji.200425785CrossRefGoogle Scholar
  169. Taylor PR, Roy S, Leal SM, Sun Y, Howell SJ, Cobb BA, Li X, Pearlman E (2014) Activation of neutrophils by autocrine IL-17A–IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat Immunol 15(2):143–151.  https://doi.org/10.1038/ni.2797CrossRefGoogle Scholar
  170. Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD (2007) Dectin-1 is required for β-glucan recognition and control of fungal infection. Nat Immunol 8(1):31–38.  https://doi.org/10.1038/ni1408CrossRefGoogle Scholar
  171. Thiagarajan PS, Yakubenko VP, Elsori DH, Yadav SP, Willard B, Tan CD, Rene Rodriguez E, Febbraio M, Cathcart MK (2013) Vimentin is an endogenous ligand for the pattern recognition receptor Dectin-1 99(3):494–504.  https://doi.org/10.1093/cvr/cvt117
  172. Thomas CF, Limper AH (2004) Pneumocystis pneumonia. N Engl J Med 350(24):2487–2498.  https://doi.org/10.1056/nejmra032588CrossRefGoogle Scholar
  173. van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latgé J-P (2017) Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol 15(11):661–674.  https://doi.org/10.1038/nrmicro.2017.90CrossRefGoogle Scholar
  174. Van De Veerdonk FL, Marijnissen RJ, Kullberg BJ, Koenen HJPM, Cheng S-C, Joosten I, Van Den Berg WB, Williams DL, Van Der Meer JWM, Joosten LAB, Netea MG (2009) The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5(4):329–340.  https://doi.org/10.1016/j.chom.2009.02.006CrossRefGoogle Scholar
  175. Vargas SL, Hughes WT, Santolaya ME, Ulloa AV, Ponce CA, Cabrera CE, Cumsille F, Gigliotti F (2001) Search for primary infection by Pneumocystis carinii in a cohort of normal, healthy infants. Clin Infect Dis 32(6):855–861.  https://doi.org/10.1086/319340CrossRefGoogle Scholar
  176. Vautier S, Drummond RA, Redelinghuys P, Murray GI, Maccallum DM, Brown GD (2012) Dectin-1 is not required for controlling Candida albicans colonization of the gastrointestinal tract. Infect Immun 80(12):4216–4222.  https://doi.org/10.1128/iai.00559-12CrossRefGoogle Scholar
  177. Vendele I, Willment JA, Silva LM, Palma AS, Chai W, Liu Y, Feizi T, Spyrou M, Stappers MHT, Brown GD, Gow NAR (2020) Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathog 16(1):e1007927.  https://doi.org/10.1371/journal.ppat.1007927CrossRefGoogle Scholar
  178. Vouldoukis I, Riveros-Moreno V, Dugas B, Ouaaz F, Becherel P, Debre P, Moncada S, Mossalayi MD (1995) The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci 92(17):7804–7808.  https://doi.org/10.1073/pnas.92.17.7804CrossRefGoogle Scholar
  179. Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B (2011) From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS ONE 6(2):e17046.  https://doi.org/10.1371/journal.pone.0017046CrossRefGoogle Scholar
  180. Wagener M, Hoving JC, Ndlovu H, Marakalala MJ (2018) Dectin-1-Syk-CARD9 signaling pathway in TB immunity. Front Immunol 9:225CrossRefGoogle Scholar
  181. Walsh NM, Wuthrich M, Wang H, Klein B, Hull CM (2017) Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and dectin-1. PLoS ONE 12(3):e0173866.  https://doi.org/10.1371/journal.pone.0173866CrossRefGoogle Scholar
  182. Wang H, Lee T-J, Fites SJ, Merkhofer R, Zarnowski R, Brandhorst T, Galles K, Klein B, Wüthrich M (2017) Ligation of dectin-2 with a novel microbial ligand promotes adjuvant activity for vaccination. PLoS Pathog 13(8):e1006568.  https://doi.org/10.1371/journal.ppat.1006568CrossRefGoogle Scholar
  183. Wang Q, Zhao G, Lin J, Li C, Jiang N, Xu Q, Wang Q, Zhang J (2016) Role of the mannose receptor during Aspergillus fumigatus infection and interaction with dectin-1 in corneal epithelial cells 35(2):267–273.  https://doi.org/10.1097/ico.0000000000000710
  184. Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, Beckhouse AG, Lo Y-L-S, Manzanero S, Cobbold C, Schroder K, Ma B, Orr S, Stewart L, Lebus D, Sobieszczuk P, Hume DA, Stow J, Blanchard H, Ashman RB (2008) The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 180(11):7404–7413.  https://doi.org/10.4049/jimmunol.180.11.7404CrossRefGoogle Scholar
  185. Werner JL, Metz AE, Horn D, Schoeb TR, Hewitt MM, Schwiebert LM, Faro-Trindade I, Brown GD, Steele C (2009) Requisite role for the dectin-1 β-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol 182(8):4938–4946.  https://doi.org/10.4049/jimmunol.0804250CrossRefGoogle Scholar
  186. Wevers BA, Kaptein TM, Zijlstra-Willems EM, Theelen B, Boekhout T, Geijtenbeek TB, Gringhuis SI (2014) Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity. Cell Host Microbe 15(4):494–505.  https://doi.org/10.1016/j.chom.2014.03.008CrossRefGoogle Scholar
  187. Williams SJ (2017) Sensing lipids with mincle: structure and function. Front Immunol 8:1662CrossRefGoogle Scholar
  188. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9(10):1179–1188.  https://doi.org/10.1038/ni.1651CrossRefGoogle Scholar
  189. Yang A-M, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, Bluemel S, Hartmann P, Xu J, Koyama Y, Kisseleva T, Torralba MG, Moncera K, Beeri K, Chen C-S, Freese K, Hellerbrand C, Lee SML, Hoffman HM, Mehal WZ, Garcia-Tsao G, Mutlu EA, Keshavarzian A, Brown GD, Ho SB, Bataller R, Stärkel P, Fouts DE, Schnabl B (2017) Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest 127(7):2829–2841.  https://doi.org/10.1172/jci90562CrossRefGoogle Scholar
  190. Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E, Suzukawa M, Inoue H, Tanaka M, Yoneyama M, Oh-Hora M, Akashi K, Yamasaki S (2014) Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 41(3):402–413.  https://doi.org/10.1016/j.immuni.2014.08.005CrossRefGoogle Scholar
  191. Yuan K, Zhao G, Che C, Li C, Lin J, Zhu G, He K (2017) Dectin-1 is essential for IL-1β production through JNK activation and apoptosis in Aspergillus fumigatus keratitis. Int Immunopharmacol 52:168–175.  https://doi.org/10.1016/j.intimp.2017.09.008CrossRefGoogle Scholar
  192. Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A (2009) Chapter 4 The capsule of the fungal pathogen Cryptococcus neoformans. Elsevier, pp 133–216.  https://doi.org/10.1016/s0065-2164(09)01204-0
  193. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272(24):6179–6217.  https://doi.org/10.1111/j.1742-4658.2005.05031.xCrossRefGoogle Scholar
  194. Zhao G, Xu Q, Lin J, Chen W, Cui T, Hu L, Jiang N (2017) The role of Mincle in innate immune to fungal keratitis. J Infect Develop Countries 11(01):89–97.  https://doi.org/10.3855/jidc.7570CrossRefGoogle Scholar
  195. Zhao X-Q, Zhu L-L, Chang Q, Jiang C, You Y, Luo T, Jia X-M, Lin X (2014) C-type lectin receptor dectin-3 mediates trehalose 6,6′-dimycolate (TDM)-induced mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem 289(43):30052–30062.  https://doi.org/10.1074/jbc.m114.588574CrossRefGoogle Scholar
  196. Zhao Y, Chu X, Chen J, Wang Y, Gao S, Jiang Y, Zhu X, Tan G, Zhao W, Yi H, Xu H, Ma X, Lu Y, Yi Q, Wang S (2016) Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat Commun 7(1):12368.  https://doi.org/10.1038/ncomms12368CrossRefGoogle Scholar
  197. Zhao Y, Lin J, Fan Y, Lin X (2019) Life cycle of Cryptococcus neoformans. Annu Rev Microbiol 73(1):17–42.  https://doi.org/10.1146/annurev-micro-020518-120210CrossRefGoogle Scholar
  198. Zhu L-L, Zhao X-Q, Jiang C, You Y, Chen X-P, Jiang Y-Y, Jia X-M, Lin X (2013) C-type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection 39 (2):324–334.  https://doi.org/10.1016/j.immuni.2013.05.017

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.AFGrica Medical Mycology Research UnitInstitute of Infectious Disease and Molecular Medicine (IDM) at the University of Cape TownCape TownSouth Africa
  2. 2.Medical Research Council Centre for Medical Mycology at the University of ExeterExeterUK

Personalised recommendations