Skip to main content

Control of Actin and Calcium for Chitin Synthase Delivery to the Hyphal Tip of Aspergillus

  • Chapter
  • First Online:
The Fungal Cell Wall

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 425))

Abstract

Filamentous fungi are covered by a cell wall consisting mainly of chitin and glucan. The synthesis of chitin, a β-1,4-linked homopolymer of N-acetylglucosamine, is essential for hyphal morphogenesis. Fungal chitin synthases are integral membrane proteins that have been classified into seven classes. ChsB, a class III chitin synthase, is known to play a key role in hyphal tip growth and has been used here as a model to understand the cell biology of cell wall biosynthesis in Aspergillus nidulans. Chitin synthases are transported on secretory vesicles to the plasma membrane for new cell wall synthesis. Super-resolution localization imaging as a powerful biophysical approach indicated dynamics of the Spitzenkörper where spatiotemporally regulated exocytosis and cell extension, whereas high-speed pulse-chase imaging has revealed ChsB transport mechanism mediated by kinesin-1 and myosin-5. In addition, live imaging analysis showed correlations among intracellular Ca2+ levels, actin assembly, and exocytosis in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. It is getting clear that turgor pressure and cell wall pressure are involved in the activation of Ca2+ channels for Ca2+ oscillation and cell extension. Here the cell wall synthesis and tip growth meet again.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abenza JF, Galindo A, Pantazopoulou A, Gil C, de los Rios V, Penalva MA (2010) Aspergillus RabB Rab5 integrates acquisition of degradative identity with the long distance movement of early endosomes. Mol Biol Cell 21:2756–69

    Google Scholar 

  • Abenza JF, Pantazopoulou A, Rodriguez JM, Galindo A, Penalva MA (2009) Long-distance movement of Aspergillus nidulans early endosomes on microtubule tracks. Traffic 10:57–75

    CAS  PubMed  Google Scholar 

  • Araujo-Bazan L, Penalva MA, Espeso EA (2008) Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 67:891–905

    CAS  PubMed  Google Scholar 

  • Berepiki A, Lichius A, Read ND (2011) Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 9:876–887

    CAS  PubMed  Google Scholar 

  • Bergs A, Ishitsuka Y, Evangelinos M, Nienhaus GU, Takeshita N (2016) Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans. Front Microbiol 7:682

    PubMed  PubMed Central  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    CAS  PubMed  Google Scholar 

  • Blumenthal HJ, Roseman S (1957) Quantitative estimation of chitin in fungi. J Bacteriol 74:222–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borgia PT, Iartchouk N, Riggle PJ, Winter KR, Koltin Y, Bulawa CE (1996) The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet Biol 20:193–203

    CAS  PubMed  Google Scholar 

  • Brand A, Shanks S, Duncan VM, Yang M, Mackenzie K, Gow NA (2007) Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol 17:347–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brand AC, Morrison E, Milne S, Gonia S, Gale CA, Gow NA (2014) Cdc42 GTPase dynamics control directional growth responses. Proc Natl Acad Sci USA 111:811–816

    CAS  PubMed  Google Scholar 

  • de Groot PW, Brandt BW, Horiuchi H, Ram AF, de Koster CG, Klis FM (2009) Comprehensive genomic analysis of cell wall genes in Aspergillus nidulans. Fungal Genet Biol 46:S72–S81

    PubMed  Google Scholar 

  • Egan MJ, Tan K, Reck-Peterson SL (2012) Lis1 is an initiation factor for dynein-driven organelle transport. J Cell Biol 197:971–982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer R, Zekert N, Takeshita N (2008) Polarized growth in fungi—interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 68:813–826

    CAS  PubMed  Google Scholar 

  • Fleissner A, Leeder AC, Roca MG, Read ND, Glass NL (2009) Oscillatory recruitment of signaling proteins to cell tips promotes coordinated behavior during cell fusion. Proc Natl Acad Sci USA 106:19387–19392

    CAS  PubMed  Google Scholar 

  • Fukuda K, Yamada K, Deoka K, Yamashita S, Ohta A, Horiuchi H (2009) Class III chitin synthase ChsB of Aspergillus nidulans localizes at the sites of polarized cell wall synthesis and is required for conidial development. Eukaryot Cell 8:945–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara M, Horiuchi H, Ohta A, Takagi M (1997) A novel fungal gene encoding chitin synthase with a myosin motor-like domain. Biochem Biophys Res Commun 236:75–78

    CAS  PubMed  Google Scholar 

  • Fujiwara M, Ichinomiya M, Motoyama T, Horiuchi H, Ohta A, Takagi M (2000) Evidence that the Aspergillus nidulans class I and class II chitin synthase genes, chsC and chsA, share critical roles in hyphal wall integrity and conidiophore development. J Biochem 127:359–366

    CAS  PubMed  Google Scholar 

  • Gibeaux R, Hoepfner D, Schlatter I, Antony C, Philippsen P (2013) Organization of organelles within hyphae of Ashbya gossypii revealed by electron tomography. Eukaryot Cell 12:1423–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldbeter A (2002) Computational approaches to cellular rhythms. Nature 420:238–245

    CAS  PubMed  Google Scholar 

  • Gonçalves I, Brouillet S, Soulie MC, Gribaldo S, Sirven C, Charron N, Boccara M, Choquer M (2016) Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi. BMC Evol Biol 16:252

    PubMed  PubMed Central  Google Scholar 

  • Goryachev AB, Lichius A, Wright GD, Read ND (2012) Excitable behavior can explain the “ping-pong” mode of communication between cells using the same chemoattractant. BioEssays 34:259–266

    CAS  PubMed  Google Scholar 

  • Hammond JW, Cai D, Blasius TL, Li Z, Jiang Y et al (2009) Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol 7:e72

    PubMed  Google Scholar 

  • Harris SD (2009) The Spitzenkörper: a signalling hub for the control of fungal development? Mol Microbiol 73:733–736

    CAS  PubMed  Google Scholar 

  • Herzog S, Schumann MR, Fleissner A (2015) Cell fusion in Neurospora crassa. Curr Opin Microbiol 28:53–59

    CAS  PubMed  Google Scholar 

  • Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higashitsuji Y, Herrero S, Takeshita N, Fischer R (2009) The cell end marker protein TeaC is involved in growth directionality and septation in Aspergillus nidulans. Eukaryot Cell 8:957–967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16:918–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horiuchi H (2009) Functional diversity of chitin synthases of Aspergillus nidulans in hyphal growth, conidiophore development and septum formation. Med Mycol 47(Suppl 1):S47–S52

    CAS  PubMed  Google Scholar 

  • Ichinomiya M, Yamada E, Yamashita S, Ohta A, Horiuchi H (2005) Class I and class II chitin synthases are involved in septum formation in the filamentous fungus Aspergillus nidulans. Eukaryot Cell 4:1125–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iida H, Nakamura H, Ono T, Okumura MS, Anraku Y (1994) MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol 14:8259–8271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishitsuka Y, Savage N, Li Y, Bergs A, Grun N, Kohler D, Donnelly R, Nienhaus GU, Fischer R, Takeshita N (2015) Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. Sci Adv 1:e1500947

    PubMed  PubMed Central  Google Scholar 

  • Janmey PA (1994) Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu Rev Physiol 56:169–191

    CAS  PubMed  Google Scholar 

  • Johnston IR (1965) The composition of the cell wall of Aspergillus niger. Biochem J 96:651–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzaki M, Nagasawa M, Kojima I, Sato C, Naruse K et al (1999) Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285:882–886

    CAS  PubMed  Google Scholar 

  • Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Czymmek KJ, Patel A, Modla S, Nohe A et al (2012) Expression of the Cameleon calcium biosensor in fungi reveals distinct Ca(2+) signatures associated with polarized growth, development, and pathogenesis. Fungal Geneti Biol 49:589–601

    CAS  Google Scholar 

  • Kobayashi T, Abe K, Asai K, Gomi K, Juvvadi PR et al (2007) Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem 71:646–670

    CAS  PubMed  Google Scholar 

  • Latgé JP, Beauvais A, Chamilos G (2017) The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu Rev Microbiol 71:99–116

    PubMed  Google Scholar 

  • Lenardon MD, Munro CA, Gow NAR (2010a) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenardon MD, Milne SA, Mora-Montes HM, Kaffarnik FA, Peck SC, Brown AJ, Munro CA, Gow NA (2010b) Phosphorylation regulates polarisation of chitin synthesis in Candida albicans. J Cell Sci 123:2199–2206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz JH, Schuchardt I, Straube A, Steinberg G (2006) A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J 25:2275–2286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Schuster M, Guimaraes SC, Ashwin P, Schrader M et al (2016) Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells. Nat Commun 7:11814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Locke EG, Bonilla M, Liang L, Takita Y, Cunningham KW (2000) A homolog of voltage-gated Ca(2+) channels stimulated by depletion of secretory Ca(2+) in yeast. Mol Cell Biol 20:6686–6694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Franco R, Bartnicki-Garcia S, Bracker CE (1994) Pulsed growth of fungal hyphal tips. Proc Natl Acad Sci USA 91:12228–12232

    CAS  PubMed  Google Scholar 

  • Motoyama T, Kojima N, Horiuchi H, Ohta A, Takagi M (1994) Isolation of a chitin synthase gene (chsC) of Aspergillus nidulans. Biosci Biotechnol Biochem 58:2254–2257

    CAS  PubMed  Google Scholar 

  • Muszkieta L, Aimanianda V, Mellado E, Gribaldo S, Alcàzar-Fuoli L, Szewczyk E, Prevost MC, Latgé JP (2014) Deciphering the role of the chitin synthase families 1 and 2 in the in vivo and in vitro growth of Aspergillus fumigatus by multiple gene targeting deletion. Cell Microbiol 16:1784–1805

    CAS  PubMed  Google Scholar 

  • Nienhaus GU, Nienhaus K, Holzle A, Ivanchenko S, Renzi F et al (2006) Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol 82:351–358

    CAS  PubMed  Google Scholar 

  • Nienhaus K, Nienhaus GU, Wiedenmann J, Nar H (2005) Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci USA 102:9156–9159

    CAS  PubMed  Google Scholar 

  • Paidhungat M, Garrett S (1997) A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol 17:6339–6347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pantazopoulou A, Pinar M, Xiang X, Penalva MA (2014) Maturation of late Golgi cisternae into RabE(RAB11) exocytic post-Golgi carriers visualized in vivo. Mol Biol Cell 25:2428–2443

    PubMed  PubMed Central  Google Scholar 

  • Penalva MA, Zhang J, Xiang X, Pantazopoulou A (2017) Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25 and kinesin-1 and is independent of kinesin-3. Mol Biol Cell 28:947–961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Nadales E, Nogueira MF, Baldin C, Castanheira S, El Ghalid M et al (2014) Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 70:42–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinar M, Arst HN, Jr., Pantazopoulou A, Tagua VG, de los Rios V et al (2015) TRAPPII regulates exocytic Golgi exit by mediating nucleotide exchange on the Ypt31 ortholog RabERAB11. Proc Natl Acad Sci USA 112:4346–51

    Google Scholar 

  • Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206

    CAS  PubMed  Google Scholar 

  • Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R (2018) Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol Mol Biol Rev 82:e00068–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renshaw H, Vargas-Muñiz JM, Richards AD, Asfaw YG, Juvvadi PR, Steinbach WJ (2016) Distinct roles of myosins in Aspergillus fumigatus hyphal growth and pathogenesis. Infect Immun 84:1556–1564

    PubMed  PubMed Central  Google Scholar 

  • Requena N, Alberti-Segui C, Winzenburg E, Horn C, Schliwa M et al (2001) Genetic evidence for a microtubule-destabilizing effect of conventional kinesin and analysis of its consequences for the control of nuclear distribution in Aspergillus nidulans. Mol Microbiol 42:121–132

    CAS  PubMed  Google Scholar 

  • Riquelme M, Bredeweg EL, Callejas-Negrete O, Roberson RW, Ludwig S et al (2014) The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth. Mol Biol Cell 25:1312–1326

    PubMed  PubMed Central  Google Scholar 

  • Riquelme M, Reynaga-Pena CG, Gierz G, Bartnicki-Garcia S (1998) What determines growth direction in fungal hyphae? Fungal gGenet Biol 24:101–109

    CAS  Google Scholar 

  • Riquelme M, Sanchez-Leon E (2014) The Spitzenkörper: a choreographer of fungal growth and morphogenesis. Curr Opin Microbiol 20:27–33

    CAS  PubMed  Google Scholar 

  • Riquelme M, Yarden O, Bartnicki-Garcia S, Bowman B, Castro-Longoria E et al (2011) Architecture and development of the Neurospora crassa hypha—a model cell for polarized growth. Fungal Biol 115:446–474

    PubMed  Google Scholar 

  • Rittenour WR, Si H, Harris SD (2009) Hyphal morphogenesis in Aspergillus nidulans. Fungal Biol Rev 23:20–29

    Google Scholar 

  • Rogg LE, Fortwendel JR, Juvvadi PR, Steinbach WJ (2012) Regulation of expression, activity and localization of fungal chitin synthases. Med Mycol 50:2–17

    CAS  PubMed  Google Scholar 

  • Sacristan C, Reyes A, Roncero C (2012) Neck compartmentalization as the molecular basis for the different endocytic behaviour of Chs3 during budding or hyperpolarized growth in yeast cells. Mol Microbiol 83:1124–1135

    CAS  PubMed  Google Scholar 

  • Sahl SJ, Moerner WE (2013) Super-resolution fluorescence imaging with single molecules. Curr Opin Struct Biol 23:778–787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 15:266–274

    CAS  PubMed  Google Scholar 

  • Schuster M, Kilaru S, Fink G, Collemare J, Roger Y, Steinberg G (2011) Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol Biol Cell 22:3645–3657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster M, Martin-Urdiroz M, Higuchi Y, Hacker C, Kilaru S, Gurr SJ, Steinberg G (2016) Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation. Nat Microbiol 1:16149

    CAS  PubMed  Google Scholar 

  • Seiler S, Nargang FE, Steinberg G, Schliwa M (1997) Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO J 16:3025–3034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano A, Hammadeh HH, Herzog S, Illgen J, Schumann MR et al (2017) The dynamics of signal complex formation mediating germling fusion in Neurospora crassa. Fungal Genet Biol 101:31–33

    CAS  PubMed  Google Scholar 

  • Smedler E, Uhlen P (2014) Frequency decoding of calcium oscillations. Biochim Biophys Acta 1840:964–969

    CAS  PubMed  Google Scholar 

  • Steinberg G (2011) Motors in fungal morphogenesis: cooperation versus competition. Current Opin Microbiol 14:660–667

    CAS  Google Scholar 

  • Sudvery PE (2008) Regulation of polarized growth in fungi. Fungal Biol Rev 22:44–55

    Google Scholar 

  • Taheri-Talesh N, Horio T, Araujo-Bazan L, Dou X, Espeso EA et al (2008) The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19:1439–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taheri-Talesh N, Xiong Y, Oakley BR (2012) the Functions of myosin II and myosin V homologs in tip growth and septation in Aspergillus nidulans. PLoS ONE 7:e31218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeshita N (2016) Coordinated process of polarized growth in filamentous fungi. Biosci Biotech Biochem 80:1693–1699

    CAS  Google Scholar 

  • Takeshita N (2018) Oscillatory fungal cell growth. Fungal Genet Biol 110:10–14

    CAS  PubMed  Google Scholar 

  • Takeshita N, Evangelinos M, Zhou L, Serizawa T, Somera-Fajardo RA et al (2017) Pulses of Ca2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proc Natl Acad Sci USA 114:5701–5706

    CAS  PubMed  Google Scholar 

  • Takeshita N, Higashitsuji Y, Konzack S, Fischer R (2008) Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 19:339–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeshita N, Manck R, Grun N, de Vega SH, Fischer R (2014) Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Curr Opin Microbiol 20:34–41

    CAS  PubMed  Google Scholar 

  • Takeshita N, Ohta A, Horiuchi H (2005) CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol Biol Cell 16:1961–1970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeshita N, Yamashita S, Ohta A, Horiuchi H (2006) Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol 59:1380–1394

    CAS  PubMed  Google Scholar 

  • Takeshita N, Wernet V, Tsuizaki M, Grun N, Hoshi HO et al (2015) Transportation of Aspergillus nidulans class III and V chitin synthases to the hyphal tips depends on conventional kinesin. PLoS ONE 10:e0125937

    PubMed  PubMed Central  Google Scholar 

  • Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Cao J, Liu X, Hu H, Shi J et al (2012) Putative calcium channels CchA and MidA play the important roles in conidiation, hyphal polarity and cell wall components in Aspergillus nidulans. PLoS ONE 7:e46564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedenmann J, Gayda S, Adam V, Oswald F, Nienhaus K et al (2011) From EosFP to mIrisFP: structure-based development of advanced photoactivatable marker proteins of the GFP-family. J Biophotn 4:377–390

    CAS  Google Scholar 

  • Yanai K, Kojima N, Takaya N, Horiuchi H, Ohta A, Takagi M (1994) Isolation and characterization of two chitin synthase genes from Aspergillus nidulans. Biosci Biotechnol Biochem 58:1828–1835

    CAS  PubMed  Google Scholar 

  • Zelter A, Bencina M, Bowman BJ, Yarden O, Read ND (2004) A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genet Biol 41:827–841

    CAS  PubMed  Google Scholar 

  • Zhou L, Evangelinos M, Wernet V, Eckert AF, Ishitsuka Y, Fischer R, Nienhaus GU, Takeshita N (2018) Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells. Sci Adv 4:e1701798

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Takeshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takeshita, N. (2019). Control of Actin and Calcium for Chitin Synthase Delivery to the Hyphal Tip of Aspergillus. In: Latgé, JP. (eds) The Fungal Cell Wall . Current Topics in Microbiology and Immunology, vol 425. Springer, Cham. https://doi.org/10.1007/82_2019_193

Download citation

Publish with us

Policies and ethics