Advertisement

The Ecology of Agrobacterium vitis and Management of Crown Gall Disease in Vineyards

  • Nemanja KuzmanovićEmail author
  • Joanna Puławska
  • Lingyun Hao
  • Thomas J. Burr
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 418)

Abstract

Agrobacterium vitis is the primary causal agent of grapevine crown gall worldwide. Symptoms of grapevine crown gall disease include tumor formation on the aerial plant parts, whereas both tumorigenic and nontumorigenic strains of A. vitis cause root necrosis. Genetic and genomic analyses indicated that A. vitis is distinguishable from the members of the Agrobacterium genus and its transfer to the genus Allorhizobium was suggested. A. vitis is genetically diverse, with respect to both chromosomal and plasmid DNA. Its pathogenicity is mainly determined by a large conjugal tumor-inducing (Ti) plasmid characterized by a mosaic structure with conserved and variable regions. Traditionally, A. vitis Ti plasmids and host strains were differentiated into octopine/cucumopine, nopaline, and vitopine groups, based on opine markers. However, tumorigenic and nontumorigenic strains of A. vitis may carry other ecologically important plasmids, such as tartrate- and opine-catabolic plasmids. A. vitis colonizes vines endophytically. It is also able to survive epiphytically on grapevine plants and is detected in soil exclusively in association with grapevine plants. Because A. vitis persists systemically in symptomless grapevine plants, it can be efficiently disseminated to distant geographical areas via international trade of propagation material. The use of healthy planting material in areas with no history of the crown gall represents the crucial measure of disease management. Moreover, biological control and production of resistant grape varieties are encouraging as future control measures.

Notes

Acknowledgements

The research of T. J. Burr presented in this paper was partially funded by USDA Federal Capacity Fund grants, USDA-APHIS National Clean Plant Network, and by the New York Wine and Grape Foundation. N. Kuzmanović was supported by the Georg Forster Fellowship for postdoctoral researchers from the Alexander von Humboldt-Foundation, Bonn, Germany. We kindly thank Dr. Ernő Szegedi for his critical reading of the manuscript.

References

  1. Abdellatif E, Valentini F, Janse JD et al (2013) Occurrence of crown gall of the grapevine in Tunisia and characterization of Tunisian Agrobacterium vitis and A. tumefaciens strains. J Plant Pathol 95:115–126Google Scholar
  2. Albiach MR, Lopez MM (1992) Plasmid heterogeneity in Spanish isolates of Agrobacterium tumefaciens from thirteen different hosts. Appl Environ Microbiol 58:2683–2687PubMedPubMedCentralGoogle Scholar
  3. Allardet-Servent A, Michaux-Charachon S, Jumas-Bilak E et al (1993) Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J Bacteriol 175:7869–7874PubMedPubMedCentralGoogle Scholar
  4. Al-Momani F, Albasheer S, Saadoun I (2006) Distribution of Agrobacterium tumefaciens biovars in Jordan and variation of virulence. Plant Pathol J 22:318–322Google Scholar
  5. Argun N, Momol MT, Maden S et al (2002) Characterization of Agrobacterium vitis strains isolated from Turkish grape cultivars in the Central Anatolia region. Plant Dis 86:162–166Google Scholar
  6. Bauer C, Schulz TF, Lorenz D et al (1994) Population dynamics of Agrobacterium vitis in two grapevine varieties during the vegetation period. Vitis 33:25–29Google Scholar
  7. Bautista-Zapanta JN, Arafat HH, Tanaka K et al (2009) Variation of 16S-23S internally transcribed spacer sequence and intervening sequence in rDNA among the three major Agrobacterium species. Microbiol Res 164:604–612PubMedGoogle Scholar
  8. Bazzi C, Piazza C, Burr TJ (1987) Detection of Agrobacterium tumefaciens in grapevine cuttings. EPPO Bulletin 17:105–112Google Scholar
  9. Bazzi C, Stefani E, Gozzi R et al (1991) Hot-water treatment of dormant grape cuttings: its effects on Agrobacterium tumefaciens and on grafting and growth of vine. Vitis 30:177–187Google Scholar
  10. Bazzi C, Alexandrova M, Stefani E et al (1999) Biological control of Agrobacterium vitis using non-tumorigenic agrobacteria. Vitis 38:31–35Google Scholar
  11. Beauchamp CJ, Chilton WS, Dion P et al (1990) Fungal catabolism of crown gall opines. Appl Environ Microbiol 56:150–155PubMedPubMedCentralGoogle Scholar
  12. Beauchamp CJ, Kloepper JW, Lifshitz R et al (1991) Frequent occurrence of the ability to utilize octopine in rhizobacteria. Can J Microbiol 37:158–164Google Scholar
  13. Beaulieu C, Coulombe LJ, Granger RL et al (1983) Characterization of opine-utilizing bacteria isolated from Quebec. Phytoprotect 64:61–68Google Scholar
  14. Bell CR, Dickie GA, Chan JWYF (1995) Variable response of bacteria isolated from grapevine xylem to control grape crown gall disease in planta. Am J Enol Vitic 46:499–508Google Scholar
  15. Bergeron J, Macleod RA, Dion P (1990) Specificity of octopine uptake by Rhizobium and Pseudomonas strains. Appl Environ Microbiol 56:1453–1458PubMedPubMedCentralGoogle Scholar
  16. Bien E, Lorenz D, Eichhorn K et al (1990) Isolation and characterization of Agrobacterium tumefaciens from the German vineregion Rheinpfalz. J Plant Dis Protect 97:313–322Google Scholar
  17. Bini F, Geider K, Bazzi C (2008a) Detection of Agrobacterium vitis by PCR using novel virD2 gene-specific primers that discriminate two subgroups. Eur J Plant Pathol 122:403–411Google Scholar
  18. Bini F, Kuczmog A, Putnoky P et al (2008b) Novel pathogen-specific primers for the detection of Agrobacterium vitis and Agrobacterium tumefaciens. Vitis 47:181–189Google Scholar
  19. Biondi E, Bini F, Anaclerio F et al (2009) Effect of bioagents and resistance inducers on grapevine crown gall. Phytopathol Mediter 48:379–384Google Scholar
  20. Bishop AL, Katz BH, Burr TJ (1988) Infection of grapevines by soilborne Agrobacterium tumefaciens biovar 3 and population dynamics in host and nonhost rhizospheres. Phytopathol 78:945–948Google Scholar
  21. Bishop AL, Burr TJ, Mittak VL et al (1989) A monoclonal antibody specific to Agrobacterium tumefaciens biovar 3 and its utilization for indexing grapevine propagation material. Phytopathol 79:995–998Google Scholar
  22. Bonnard G, Tinland B, Paulus F et al (1989) Nucleotide sequence, evolutionary origin and biological role of a rearranged cytokinin gene isolated from a wide host range biotype III Agrobacterium strain. Mol Gen Genet 216:428–438PubMedGoogle Scholar
  23. Bouzar H, Moore LW (1987) Isolation of different Agrobacterium biovars from a natural oak savanna and tallgrass prairie. Appl Environ Microbiol 53:717–721PubMedPubMedCentralGoogle Scholar
  24. Brencic A, Angert ER, Winans SC (2005) Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumour free. Mol Microbiol 57:1522–1531PubMedGoogle Scholar
  25. Brisset M-N, Rodriguez-Palenzuela P, Burr TJ et al (1991) Attachment, chemotaxis, and multiplication of Agrobacterium tumefaciens biovar 1 and biovar 3 on grapevine and pea. Appl Environ Microbiol 57:3178–3182PubMedPubMedCentralGoogle Scholar
  26. Buchholz WG, Thomashow MF (1984a) Comparison of T-DNA oncogene complements of Agrobacterium tumefaciens tumor-inducing plasmids with limited and wide host ranges. J Bacteriol 160:319–326PubMedPubMedCentralGoogle Scholar
  27. Buchholz WG, Thomashow MF (1984b) Host range encoded by the Agrobacterium tumefaciens tumor-inducing plasmid pTiAg63 can be expanded by modification of its T-DNA oncogene complement. J Bacteriol 160:327–332PubMedPubMedCentralGoogle Scholar
  28. Burr TJ, Hurwitz B (1981) Occurrence of Agrobacterium radiobacter pv. tumefaciens (Smith & Townsend) biotype 3 on grapevine in New York State (Abstr.). Phytopathol 71:26Google Scholar
  29. Burr TJ, Katz BH (1983) Isolation of Agrobacterium tumefaciens biovar 3 from grapevine galls and sap, and from vineyard soil. Phytopathol 73:163–165Google Scholar
  30. Burr TJ, Katz BH (1984) Grapevine cuttings as potential sites of survival and means of dissemination of Agrobacterium tumefaciens. Plant Dis 68:976–978Google Scholar
  31. Burr TJ, Otten L (1999) Crown gall of grape: Biology and disease management. Annu Rev Phytopathol 37:53–80PubMedGoogle Scholar
  32. Burr TJ, Reid CL (1994) Biological control of grape crown gall with non-tumorigenic Agrobacterium vitis strain F2/5. Am J Enol Vitic 45:213–219Google Scholar
  33. Burr TJ, Bishop AL, Katz BH et al (1987a) A root-specific decay of grapevine caused by Agrobacterium tumefaciens and A. radiobacter biovar 3. Phytopathol 77:1424–1427Google Scholar
  34. Burr TJ, Katz BH, Bishop AL (1987b) Populations of Agrobacterium in vineyard and non vineyard soils and grape roots in vineyards and nurseries. Plant Dis 71:617–620Google Scholar
  35. Burr TJ, Katz BH, Bishop AL et al (1988) Effect of shoot age and tip culture propagation of grapes on systemic infestations by Agrobacterium tumefaciens biovar 3. Am J Enol Vitic 39:67–70Google Scholar
  36. Burr TJ, Ophel K, Kerr A (1989) Effect of hot water treatment on systemic Agrobacterium tumefaciens biovar 3 in dormant grape cuttings. Plant Dis 73:242–245Google Scholar
  37. Burr TJ, Reid CL, Tagliatti E et al (1995) Survival and tumorigenicity of Agrobacterium vitis in living and decaying grape roots and canes in soil. Plant Dis 79:677–682Google Scholar
  38. Burr TJ, Reid CL, Splittstoesser DF et al (1996) Effect of heat treatments on grape bud mortality and survival of Agrobacterium vitis in vitro and in dormant grape cuttings. Am J Enol Vitic 47:119–123Google Scholar
  39. Burr TJ, Reid CL, Tagliati E et al (1997) Biological control of grape crown gall by strain F2/5 is not associated with agrocin production or competition for attachment sites on grape cells. Phytopathol 87:706–711Google Scholar
  40. Burr TJ, Bazzi C, Süle S et al (1998) Crown gall of grape: Biology of Agrobacterium vitis and the development of disease control strategies. Plant Dis 82:1288–1297Google Scholar
  41. Burr TJ, Reid CL, Adams CE et al (1999) Characterization of Agrobacterium vitis strains isolated from feral Vitis riparia. Plant Dis 83:102–107Google Scholar
  42. Burr TJ, Johnson KL, Kaewnum S et al (2017) Detection of Agrobacterium spp. in grapevines (Chapter 43). In: Fatmi MB, Walcott RR, Schaad NW (eds) Detection of plant-pathogenic bacteria in seed and other planting material. Second edn. APS Press, Minneapolis, MN, USAGoogle Scholar
  43. Canaday J, Gerad JC, Crouzet P et al (1992) Organization and functional analysis of three T-DNAs from the vitopine Ti plasmid pTiS4. Mol Gen Genet 235:292–303PubMedGoogle Scholar
  44. Canfield ML, Moore LW (1991) Isolation and characterization of opine-utilizing strains of Agrobacterium tumefaciens and fluorescent strains of Pseudomonas spp. from rootstocks of Malus. Phytopathol 81:440–443Google Scholar
  45. Canik Orel D, Karagoz A, Durmaz R et al (2016) Phenotypic and molecular characterization of Rhizobium vitis strains from vineyards in Turkey. Phytopathol Mediter 55Google Scholar
  46. Canik Orel D, Reid CL, Fuchs M et al (2017) Identifying environmental sources of Agrobacterium vitis in vineyards and wild grapevines. Am J Enol Vitic 68:213–217Google Scholar
  47. Cassells AC (2012) Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. Methods in molecular biology (Clifton, NJ) 877:57–80Google Scholar
  48. Cavara F (1897) Tubercolosi della vite. Intorno alla eziologia de alcune malattie di piante coltivate. Stazoni Sperimentali Agrarie Italiane 30:483–487Google Scholar
  49. Chang CC, Jayaswal RK, Chen CM et al (1989) Altered imino diacid synthesis and transcription in crown gall tumors with transposon Tn5 insertions in the 3′ end of the octopine synthase gene. J Bacteriol 171:5922–5927PubMedPubMedCentralGoogle Scholar
  50. Chebil S, Fersi R, Chenenaoui S et al (2013a) First report of Agrobacterium vitis as causal agent of crown gall disease of grapevine in Tunisia. Plant Dis 97:836Google Scholar
  51. Chebil S, Fersi R, Chenenaoui S et al (2013b) Occurrence of Agrobacterium vitis carrying two opine-type plasmids in Tunisian vineyards. J Plant Pathol Microbiol 4:175Google Scholar
  52. Chen F, Guo YB, Wang JH et al (2007) Biological control of grape crown gall by Rahnella aquatilis HX2. Plant Dis 91:957–963Google Scholar
  53. Chilton WS, Petit A, Chilton MD et al (2001) Structure and characterization of the crown gall opines heliopine, vitopine and rideopine. Phytochem 58:137–142Google Scholar
  54. Christie PJ, Gordon JE (2014) The Agrobacterium Ti Plasmids. Microbiology spectrum 2.  https://doi.org/10.1128/microbiolspec.plas-0010-2013
  55. Clare BG, Kerr A, Jones DA (1990) Characteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease. Plasmid 23:126–137PubMedGoogle Scholar
  56. Couturier MA, Bex F, Bergquist PL, Maas WK (1988) Identification and classification of bacterial plasmids. Microbiol rev 52(3):375–395 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC373151/
  57. Crouzet P, Otten L (1995) Sequence and mutational analysis of a tartrate utilization operon from Agrobacterium vitis. J Bacteriol 177:6518–6526PubMedPubMedCentralGoogle Scholar
  58. Dahl GA, Guyon P, Petit A et al (1983) Characterization of opine utilizing bacteria isolated from Quebec Canada. Phytoprotect 64:61–68Google Scholar
  59. De Oliveira JR, Da Silva Romeiro R, De Souza Leäo Lacerda B (1994) Occurrence of Agrobacterium tumefaciens biovar 3 on grapevine in Brazil. J Phytopathol 140:363–366Google Scholar
  60. Dessaux Y, Petit A, Tempe J (1993) Chemistry and biochemistry of opines, chemical mediators of parasitism. Phytochem 34:31–38Google Scholar
  61. Dessaux Y, Petit A, Farrand SK et al (1998) Opines and opine-like molecules involved in plant-Rhizobiaceae interactions. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae, molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 173–197Google Scholar
  62. Dhanvantari BN (1983) Etiology of grape crown gall in Ontario. Can J Bot 61:2641–2646Google Scholar
  63. Dula T, Kolber M, Lazar J et al (2007) Production of healthy grapevine propagating material: Pathogens and methods. Online publication http://oiv2007hu/documents/viticulture/Szegedi_OIV_2007_textpdfGoogle Scholar
  64. Eastwell KC, Sholberg PL, Sayler RJ (2006) Characterizing potential bacterial biocontrol agents for suppression of Rhizobium vitis, causal agent of crown gall disease in grapevines. Crop Protect 25:1191–1200Google Scholar
  65. Fabre E, Dunal MF (1853) Observations sur les maladies régnantes de la vigne. Bulletin de la Société d’Agriculture du Département de l’Hérault 40:46Google Scholar
  66. Faist H, Keller A, Hentschel U et al (2016) Grapevine (Vitis vinifera) crown galls host distinct microbiota. Appl Environ Microbiol 82:5542–5552PubMedPubMedCentralGoogle Scholar
  67. Farrand SK (1998) Conjugal plasmids and their transfer. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The rhizobiaceae: molecular biology of model plant-associated bacteria. Springer, Netherlands, Dordrecht, pp 199–233Google Scholar
  68. Faure D, Lang J (2014) Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. Front Plant Sci 5Google Scholar
  69. Ferreira JHS, van Zyl FGH (1986) Susceptibility of grapevine rootstocks to strains of Agrobacterium tumefaciens biovar 3. S Afr J Enol Vitic 7:101–104Google Scholar
  70. Ferrigo D, Causin R, Raiola A (2017) Effect of potential biocontrol agents selected among grapevine endophytes and commercial products on crown gall disease. Biocontrol 62:821–833Google Scholar
  71. Filo A, Sabbatini P, Sundin GW et al (2013) Grapevine crown gall suppression using biological control and genetic engineering: a review of recent research. Am J Enol Vitic 64:1–14Google Scholar
  72. Galambos A, Zok A, Kuczmog A et al (2013) Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance. Plant Cell Rep 32:1751–1757PubMedGoogle Scholar
  73. Gallie DR, Kado CI (1988) Minimal region necessary for autonomous replication of pTAR. J Bacteriol 170:3170–3176PubMedPubMedCentralGoogle Scholar
  74. Gallie DR, Zaitlin D, Perry KL et al (1984) Characterization of the replication and stability regions of Agrobacterium tumefaciens plasmid pTAR. J Bacteriol 157:739–745PubMedPubMedCentralGoogle Scholar
  75. Garcillan-Barcia MP, Francia MV, de la Cruz F (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33:657–687PubMedGoogle Scholar
  76. Garcillan-Barcia MP, Alvarado A, de la Cruz F (2011) Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol Rev 35:936–956PubMedGoogle Scholar
  77. Gelvin SB (2012) Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front Plant Sci 3:52PubMedPubMedCentralGoogle Scholar
  78. Genov I, Atanassov I, Tsvetkov I et al (2006a) Isolation and characterization of Agrobacterium strains from grapevines in Bulgarian vineyards and wild grapes, V. vinifera ssp. silvestris. Vitis 45:97–101Google Scholar
  79. Genov I, Atanassov I, Yordanov Y et al (2006b) Genetic diversity of Agrobacterium vitis strains, isolated from grapevines and wild grapes in Bulgaria, assessed by cleaved amplified polymorphic sequences analysis of 16S-23S rDNA. Vitis 45:125–130Google Scholar
  80. Genov N, Llop P, Lopez MM et al (2015) Molecular and phenotypic characterization of Agrobacterium species from vineyards allows identification of typical Agrobacterium vitis and atypical biovar 1 strains. J Appl Microbiol 118:1465–1477PubMedGoogle Scholar
  81. Gerard JC, Canaday J, Szegedi E et al (1992) Physical map of the vitopine Ti plasmid pTiS4. Plasmid 28:146–156PubMedGoogle Scholar
  82. Gevers D, Cohan FM, Lawrence JG et al (2005) Re-evaluating prokaryotic species. Nat Rev. Micro 3:733–739Google Scholar
  83. Gillings M, Ophel-Keller K (1995) Comparison of strains of Agrobacterium vitis from grapevine source areas in Australia. Austral Plant Pathol 24:29–37Google Scholar
  84. Goodman RN, Grimm R, Frank M (1993) The influence of grape rootstocks on the crown gall infection process and on tumor development. Am J Enol Vitic 44:22–26Google Scholar
  85. Guyon P, Petit A, Tempe J et al (1993) Transformed plants producing opines specifically promote growth of opine-degrading agrobacteria. Mol Plant-Microbe Interact 6:92–98Google Scholar
  86. Haas JH, Zveibil A, Zutra D et al (1991) The presence of crown gall of grape incited by Agrobacterium tumefaciens biovar 3 in Israel. Phytoparasitica 19:311–318Google Scholar
  87. Habbadi K, Benkirane R, Benbouazza A et al (2017a) Biological control of grapevine crown gall caused by Allorhizobium vitis using bacterial antagonists. Int J Science Res 6:1390–1397Google Scholar
  88. Habbadi K, Meyer T, Vial L et al (2017b) Essential oils of Origanum compactum and Thymus vulgaris exert a protective effect against the phytopathogen Allorhizobium vitis. Environ Sci Pollut Res IntGoogle Scholar
  89. Hao G, Burr TJ (2006) Regulation of long-chain N-acyl-homoserine lactones in Agrobacterium vitis. J Bacteriol 188:2173–2183PubMedPubMedCentralGoogle Scholar
  90. Hao G, Zhang H, Zheng D et al (2005) luxR homolog avhR in Agrobacterium vitis affects the development of a grape-specific necrosis and a tobacco hypersensitive response. J Bacteriol 187:185–192PubMedPubMedCentralGoogle Scholar
  91. Hao L, Kemmenoe DJ, Orel DC et al (2017) The impacts of tumorigenic and non-tumorigenic Agrobacterium vitis strains on graft strength and growth of grapevines. Plant DisGoogle Scholar
  92. Herlache TC (1999) Biochemical and molecular genetic investigations of the Agrobacterium vitis–grapevine interaction. Ph.D. Thesis, Cornell University, Ithaca, NYGoogle Scholar
  93. Herlache TC, Hotchkiss AT, Burr TJ et al (1997) Characterization of the Agrobacterium vitis pehA gene and comparison of the encoded polygalacturonase with the homologous enzymes from Erwinia carotovora and Ralstonia solanacearum. Appl Environ Microbiol 63:338–346PubMedPubMedCentralGoogle Scholar
  94. Herlache TC, Zhang HS, Ried CL et al (2001) Mutations that affect Agrobacterium vitis-induced grape necrosis also alter its ability to cause a hypersensitive response on tobacco. Phytopathol 91:966–972Google Scholar
  95. Hoekema A, de Pater BS, Fellinger AJ et al (1984) The limited host range of an Agrobacterium tumefaciens strain extended by a cytokinin gene from a wide host range T-region. EMBO 3:3043–3047Google Scholar
  96. Hooykaas PJJ (2000) Agrobacterium, a natural metabolic engineer of plants. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Springer, The Netherlands, Dordrecht, pp 51–67Google Scholar
  97. Huang S, Long M, Fu G et al (2015) Characterization of a new pathovar of Agrobacterium vitis causing banana leaf blight in China. J Basic Microbiol 55:129–134PubMedGoogle Scholar
  98. Huss B, Tinland B, Paulus F et al (1990) Functional analysis of a complex oncogene arrangement in biotype III Agrobacterium tumefaciens strains. Plant Mol Biol 14:173–186PubMedGoogle Scholar
  99. Ignatov AN, Khodykina MV, Vinogradova SV et al (2016) First report of Agrobacterium vitis causing crown galls of wine grape in Russia. Plant Dis 100:853Google Scholar
  100. Irelan NA, Meredith CP (1996) Genetic analysis of Agrobacterium tumefaciens and A. vitis using randomly amplified polymorphic DNA. Am J Enol Vitic 47:145–151Google Scholar
  101. Johnson KL, Zheng D, Kaewnum S et al (2013) Development of a magnetic capture hybridization real-time PCR assay for detection of tumorigenic Agrobacterium vitis in grapevines. Phytopathol 103:633–640Google Scholar
  102. Johnson KL, Cronin H, Reid CL et al (2016) Distribution of Agrobacterium vitis in grapevines and its relevance to pathogen elimination. Plant Dis 100:791–796Google Scholar
  103. Jones DA, Ryder MH, Clare BG et al (1988) Construction of a Tra deletion mutant of pAgK84 to safeguard the biological control of crown gall. Mol Gen Genet 212:207–214Google Scholar
  104. Jumas-Bilak E, Michaux-Charachon S, Bourg G et al (1998) Unconventional genomic organization in the alpha subgroup of the Proteobacteria. J Bacteriol 180:2749–2755PubMedPubMedCentralGoogle Scholar
  105. Jung S-M, Hur Y-Y, Preece JE et al (2016) Profiling of disease-related metabolites in grapevine internode tissues infected with Agrobacterium vitis. Plant Pathol J 32:489–499PubMedPubMedCentralGoogle Scholar
  106. Kado CI (1998) Origin and evolution of plasmids. Antonie Van Leeuwenhoek 73:117–126PubMedGoogle Scholar
  107. Kaewnum S, Zheng D, Reid CL et al (2013) A host-specific biological control of grape crown gall by Agrobacterium vitis strain F2/5: its regulation and population dynamics. Phytopathol 103:427–435Google Scholar
  108. Karimi M, Van Montagu M, Gheysen G (2000) Nematodes as vectors to introduce Agrobacterium into plant roots. Mol Plant Pathol 1:383–387PubMedGoogle Scholar
  109. Kawaguchi A (2013) Biological control of crown gall on grapevine and root colonization by nonpathogenic Rhizobium vitis strain ARK-1. Microbes Environ 28:306–311PubMedPubMedCentralGoogle Scholar
  110. Kawaguchi A (2014) Reduction in pathogen populations at grapevine wound sites is associated with the mechanism underlying the biological control of crown gall by Rhizobium vitis strain ARK-1. Microbes Environ 29:296–302PubMedPubMedCentralGoogle Scholar
  111. Kawaguchi A (2015) Biological control agent Agrobacterium vitis strain ARK-1 suppresses expression of the virD2 and virE2 genes in tumorigenic A. vitis. Eur J Plant Pathol 143:789–799Google Scholar
  112. Kawaguchi A, Inoue K (2009) Grapevine crown gall caused by Rhizobium radiobacter (Ti) in Japan. J Gen Plant Pathol 75:205–212Google Scholar
  113. Kawaguchi A, Inoue K (2012) New antagonistic strains of non-pathogenic Agrobacterium vitis to control grapevine crown gall. J Phytopathol 160:509–518Google Scholar
  114. Kawaguchi A, Inoue K, Nasu H (2005) Inhibition of crown gall formation by Agrobacterium radiobacter biovar 3 strains isolated from grapevine. J Gen Plant Pathol 71:422–430Google Scholar
  115. Kawaguchi A, Inoue K, Nasu H (2007) Biological control of grapevine crown gall by nonpathogenic Agrobacterium vitis strain VAR03-1. J Gen Plant Pathol 73:133–138Google Scholar
  116. Kawaguchi A, Inoue K, Ichinose Y (2008a) Biological control of crown gall of grapevine, rose, and tomato by nonpathogenic Agrobacterium vitis strain VAR03-1. Phytopathol 98:1218–1225Google Scholar
  117. Kawaguchi A, Sawada H, Ichinose Y (2008b) Phylogenetic and serological analyses reveal genetic diversity of Agrobacterium vitis strains in Japan. Plant Pathol 57:747–753Google Scholar
  118. Kawaguchi A, Inoue K, Tanina K (2014) Evaluation of the nonpathogenic Agrobacterium vitis strain ARK-1 for crown gall control in diverse plant species. Plant Dis 99:409–414Google Scholar
  119. Kawaguchi A, Inoue K, Tanina K et al (2017) Biological control for grapevine crown gall using nonpathogenic Rhizobium vitis strain ARK-1. Proc Jpn Acad Ser B Phys Biol Sci 93:547–560PubMedPubMedCentralGoogle Scholar
  120. Kerr A (1972) Biological control of crown gall: seed inoculation. J Appl Bacteriol 35:493–497Google Scholar
  121. Kerr A, Panagopoulos CG (1977) Biotypes of Agrobacterium radiobacter var. tumefaciens and their biological control. J Phytopathol 90:172–179Google Scholar
  122. Khmel IA, Sorokina TA, Lemanova NB et al (1998) Biological control of crown gall in grapevine and raspberry by two Pseudomonas spp. with a wide spectrum of antagonistic activity. Biocontrol Sci Technol 8:45–57Google Scholar
  123. Kim JG, Park BK, Kim SU et al (2006) Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan horse antibiotic that controls crown gall. Proc Natl Acad Sci USA 103:8846–8851PubMedGoogle Scholar
  124. Knauf VC, Panagopoulos CG, Nester EW (1982) Genetic factors controlling the host range of Agrobacterium tumefaciens. Phytopathol 72:1545–1549Google Scholar
  125. Knauf VC, Panagopoulos CG, Nester EW (1983) Comparison of Ti plasmids from three different biotypes of Agrobacterium tumefaciens isolated from grapevines. J Bacteriol 153:1535–1542PubMedPubMedCentralGoogle Scholar
  126. Krastanova SV, Balaji V, Holden MR et al (2010) Resistance to crown gall disease in transgenic grapevine rootstocks containing truncated virE2 of Agrobacterium. Transgenic Res 19:949–958PubMedGoogle Scholar
  127. Kuczmog A, Galambos A, Horvath S et al (2012) Mapping of crown gall resistance locus Rcg1 in grapevine. Theor Appl Genet 125:1565–1574PubMedGoogle Scholar
  128. Kuzmanović N, Ivanović M, Prokić A et al (2014) Characterization and phylogenetic diversity of Agrobacterium vitis from Serbia based on sequence analysis of 16S-23S rRNA internal transcribed spacer (ITS) region. Eur J Plant Pathol 140:757–768Google Scholar
  129. Kuzmanović N, Biondi E, Bertaccini A et al (2015) Genetic relatedness and recombination analysis of Allorhizobium vitis strains associated with grapevine crown gall outbreaks in Europe. J Appl Microbiol 119:786–796PubMedGoogle Scholar
  130. Kuzmanović N, Biondi E, Ivanović M et al (2016) Evaluation of different PCR primers for identification of tumorigenic bacteria associated with grapevine crown gall. J Plant Pathol 98:311–319Google Scholar
  131. Kuzmanović N, Puławska J, Smalla K et al (2018) Agrobacterium rosae sp. nov., isolated from galls on different agricultural crops. Syst Appl MicrobiolGoogle Scholar
  132. Lehoczky J (1968) Spread of Agrobacterium tumefaciens in the vessels of the grapevine, after natural infection. J Phytopathol 63:239–246Google Scholar
  133. Lehoczky J (1971) Further evidences concerning the systemic spreading of Agrobacterium tumefaciens in the vascular system of grapevines. Vitis 10:215–221Google Scholar
  134. Lehoczky J (1978) Root-system of the grapevine as a reservoir of Agrobacterium tumefaciens cells. In: 4th international conference on plant pathogenic bacteria, Angers, France, pp 239–243Google Scholar
  135. Lehoczky J (1989) Inoculation experiment on trellised grapevines with Agrobacterium tumefaciens to study the process of crown gall disease. Acta Phytopathol Entomol Hung 24:283–291Google Scholar
  136. Li Y, Gronquist MR, Hao G et al (2005) Chromosome and plasmid-encoded N-acyl homoserine lactones produced by Agrobacterium vitis wildtype and mutants that differ in their interactions with grape and tobacco. Physiol Mol Plant Pathol 67:284–290Google Scholar
  137. Lim SH, Kim JG, Kang HW (2009) Novel SCAR primers for specific and sensitive detection of Agrobacterium vitis strains. Microbiol Res 164:451–460PubMedGoogle Scholar
  138. López MM, Gorris MT, Montojo AM (1988) Opine utilization by Spanish isolates of Agrobacterium tumefaciens. Plant Pathol 37:565–572Google Scholar
  139. Loubser JT (1978) Identification of Agrobacterium tumefaciens biotype 3 on grapevine in South Africa. Plant Dis Rep 62:730–731Google Scholar
  140. Lowe N, Gan HM, Chakravartty V et al (2009) Quorum-sensing signal production by Agrobacterium vitis strains and their tumor-inducing and tartrate-catabolic plasmids. FEMS Microbiol Lett 296:102–109PubMedGoogle Scholar
  141. Ma DQ, Yanofsky MF, Gordon MP et al (1987) Characterization of Agrobacterium tumefaciens strains isolated from grapevine tumors in China. Appl Environ Microbiol 53:1338–1343PubMedPubMedCentralGoogle Scholar
  142. Mahmoodzadeh H, Nazemieh A, Majidi I et al (2004) Evaluation of crown gall resistance in Vitis vinifera and hybrids of Vitis spp. Vitis 43:75–79Google Scholar
  143. Mansouri H, Petit A, Oger P et al (2002) Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68:2562–2566PubMedPubMedCentralGoogle Scholar
  144. McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127PubMedGoogle Scholar
  145. McGuire RG, Rodriguez-Palenzuela P, Collmer A et al (1991) Polygalacturonase production by Agrobacterium tumefaciens biovar 3. Appl Environ Microbiol 57:660–664PubMedPubMedCentralGoogle Scholar
  146. Meier-Kolthoff JP, Auch AF, Klenk H-P et al (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:1–14Google Scholar
  147. Merlo DJ, Nester EW (1977) Plasmids in avirulent strains of Agrobacterium. J Bacteriol 129:76–80PubMedPubMedCentralGoogle Scholar
  148. Mohammadi M, Fatehi-Paykani R (1999) Phenotypical characterization of Iranian isolates of Agrobacterium vitis, the causal agent of crown gall disease of grapevine. Vitis 38:115–121Google Scholar
  149. Momol EA, Burr TJ, Reid CL et al (1998) Genetic diversity of Agrobacterium vitis as determined by DNA fingerprints of the 5′-end of the 23S rRNA gene and random amplified polymorphic DNA. J Appl Microbiol 85:685–692Google Scholar
  150. Moore LW, Chilton WS, Canfield ML (1997) Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors. Appl Environ Microbiol 63:201–207PubMedPubMedCentralGoogle Scholar
  151. Moore LW, Bouzar H, Burr TJ (2001) Agrobacterium. In: Schaad NW, Jones JB, Chun W (eds) Laboratory guide for identification of plant pathogenic bacteria, 3rd edn. APS Press, St Paul, Minnesota, pp 17–35Google Scholar
  152. Mousavi SA, Osterman J, Wahlberg N et al (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215PubMedPubMedCentralGoogle Scholar
  153. Mousavi SA, Willems A, Nesme X et al (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90Google Scholar
  154. Moyer M (2013) Grapevine crown gall, disease management white paper. http://winewsuedu/wp-content/uploads/sites/66/2013/05/2013-CrownGallWhiteSheetpdfGoogle Scholar
  155. Nascimento T, Oliveira H, Schulz T (1999) Identification of Agrobacterium vitis by amplification of molecular markers. Petria 9:81–84Google Scholar
  156. Nautiyal CS, Dion P (1990) Characterization of the opine-utilizing microflora associated with samples of soil and plants. Appl Environ Microbiol 56:2576–2579PubMedPubMedCentralGoogle Scholar
  157. Nautiyal CS, Dion P, Chilton WS (1991) Mannopine and mannopinic acid as substrates for Arthrobacter sp. strain MBA209 and Pseudomonas putida NA513. J Bacteriol 173:2833–2841PubMedPubMedCentralGoogle Scholar
  158. Oger P, Farrand SK (2002) Two opines control conjugal transfer of an Agrobacterium plasmid by regulating expression of separate copies of the quorum-sensing activator gene traR. J Bacteriol 184:1121–1131PubMedPubMedCentralGoogle Scholar
  159. Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15:369–372PubMedPubMedCentralGoogle Scholar
  160. Ophel K, Kerr A (1990) Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Int J Syst Bacteriol 40:236–241Google Scholar
  161. Ophel K, Burr TJ, Magarey PA et al (1988) Detection of Agrobacterium tumefaciens biovar 3 in South Australian grapevine propagation material. Austral Plant Pathol 17:61–66Google Scholar
  162. Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA et al (2015) Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38:287–291PubMedGoogle Scholar
  163. Otten L, De Ruffray P (1994) Agrobacterium vitis nopaline Ti plasmid pTiAB4: relationship to other Ti plasmids and T-DNA structure. Mol Gen Genet 245:493–505PubMedPubMedCentralGoogle Scholar
  164. Otten L, Canaday J, Gerard JC et al (1992) Evolution of agrobacteria and their Ti plasmids—a review. Mol Plant Microbe Interact 5:279–287PubMedGoogle Scholar
  165. Otten L, Gerard JC, De Ruffray P (1993) The Ti plasmid from the wide host range Agrobacterium vitis strain Tm4: Map and homology with other Ti plasmids. Plasmid 29:154–159PubMedPubMedCentralGoogle Scholar
  166. Otten L, Crouzet P, Salomone JY et al (1995) Agrobacterium vitis strain AB3 harbors two independent tartrate utilization systems, one of which is encoded by the Ti plasmid. Mol Plant Microbe Interact 8:138–146Google Scholar
  167. Otten L, De Ruffray P, de Lajudie P et al (1996a) Sequence and characterisation of a ribosomal RNA operon from Agrobacterium vitis. Mol Gen Genet 251:99–107PubMedGoogle Scholar
  168. Otten L, de Ruffray P, Momol EA et al (1996b) Phylogenetic relationship between Agrobacterium vitis isolates and their Ti plasmids. Mol Plant Microbe Interact 9:782–786Google Scholar
  169. Otten L, Burr T, Szegedi E (2008) Agrobacterium: a disease-causing bacterium. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, USA, pp 1–46Google Scholar
  170. Palacio-Bielsa A, Cambra MA, López MM (2009a) PCR detection and identification of plant-pathogenic bacteria: updated review of protocols (1989–2007). J Plant Pathol 91:249–297Google Scholar
  171. Palacio-Bielsa A, González-Abolafio R, Álvarez B et al (2009b) Chromosomal and Ti plasmid characterization of tumorigenic strains of three Agrobacterium species isolated from grapevine tumours. Plant Pathol 58:584–593Google Scholar
  172. Panagopoulos CG, Psallidas PG (1973) Characteristics of Greek isolates of Agrobacterium tumefaciens (E.F. Smith & Townsend). Conn J Appl Bacteriol 36:233–240PubMedGoogle Scholar
  173. Panagopoulos CG, Psallidas PG, Alivizatos AS (1978) Studies on biotype 3 of Agrobacterium radiobacter var. tumefaciens. In: 4th international conference on plant pathogenic bacteria, Angers, France, pp 221–228Google Scholar
  174. Pappas KM, Cevallos MA (2011) Plasmids of the Rhizobiaceae and their role in interbacterial and transkingdom interactions. In: Witzany G (ed) Biocommunication in soil microorganisms. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 295–337Google Scholar
  175. Paulus F, Huss B, Bonnard G et al (1989a) Molecular systematics of biotype III Ti plasmids of Agrobacterium tumefaciens. Mol Plant-Microbe Interact 2:64–74Google Scholar
  176. Paulus F, Ride M, Otten L (1989b) Distribution of two Agrobacterium tumefaciens insertion elements in natural isolates: evidence for stable association between Ti plasmids and their bacterial hosts. Mol Gen Genet 219:145–152Google Scholar
  177. Paulus F, Canaday J, Otten L (1991a) Limited host range Ti plasmids: recent origin from wide host range Ti plasmids and involvement of a novel IS element, IS868. Mol Plant Microbe Interact 4:190–197PubMedGoogle Scholar
  178. Paulus F, Canaday J, Vincent F et al (1991b) Sequence of the iaa and ipt region of different Agrobacterium tumefaciens biotype III octopine strains: reconstruction of octopine Ti plasmid evolution. Plant Mol Biol 16:601–614PubMedGoogle Scholar
  179. Perović T, Renzi M, Mazzaglia A et al (2015) First report of Agrobacterium tumefaciens as a causal agent of crown gall on grapevine in Montenegro. Plant Dis 100:515Google Scholar
  180. Perry KL, Kado CI (1982) Characteristics of Ti plasmids from broad-host-range and ecologically specific biotype 2 and 3 strains of Agrobacterium tumefaciens. J Bacteriol 151:343–350PubMedPubMedCentralGoogle Scholar
  181. Pinto UM, Pappas KM, Winans SC (2012) The ABCs of plasmid replication and segregation. Nat Rev Microbiol 10:755–765PubMedGoogle Scholar
  182. Pitzschke A, Hirt H (2010) New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 29:1021–1032PubMedPubMedCentralGoogle Scholar
  183. Poppenberger B, Leonhardt W, Redl H (2002) Latent persistence of Agrobacterium vitis in micropropagated Vitis vinifera. Vitis 41:113–114Google Scholar
  184. Pu X-A, Goodman RN (1993) Effects of fumigation and biological control on infection of indexed crown gall free grape plants. Am J Enol Vitic 44:241–248Google Scholar
  185. Puławska J, Willems A, De Meyer SE et al (2012) Rhizobium nepotum sp. nov. isolated from tumors on different plant species. Syst Appl Microbiol 35:215–220PubMedGoogle Scholar
  186. Puławska J, Kuzmanović N, Willems A et al (2016) Pararhizobium polonicum sp. nov. isolated from tumors on stone fruit rootstocks. Syst Appl Microbiol 39:164–169PubMedGoogle Scholar
  187. Ramírez-Bahena MH, Vial L, Lassalle F et al (2014) Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Mol Phylogenet Evol 73:202–207PubMedGoogle Scholar
  188. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131PubMedGoogle Scholar
  189. Ridé M, Ridé S, Petit A et al (2000) Characterization of plasmid-borne and chromosome-encoded traits of Agrobacterium biovar 1, 2, and 3 strains from France. Appl Environ Microbiol 66:1818–1825PubMedPubMedCentralGoogle Scholar
  190. Rodriguez-Palenzuela P, Burr TJ, Collmer A (1991) Polygalacturonase is a virulence factor in Agrobacterium tumefaciens biovar 3. J Bacteriol 173:6547–6552PubMedPubMedCentralGoogle Scholar
  191. Roh JH, Yun HK, Park KS et al (2003) In vivo evaluation of resistance of grape varieties to crown gall disease. Plant Pathol J 19:235–238Google Scholar
  192. Rouhrazi K, Rahimian H (2012a) Characterization of Iranian grapevine isolates of Rhizobium (Agrobacterium) spp. J Plant Pathol 94:555–560Google Scholar
  193. Rouhrazi K, Rahimian H (2012b) Genetic diversity of Iranian Agrobacterium strains from grapevine. Ann Microbiol 62:1661–1667Google Scholar
  194. Saito K, Watanabe M, Matsui H et al (2018) Characterization of the suppressive effects of the biological control strain VAR03-1 of Rhizobium vitis on the virulence of tumorigenic R. vitis. J Gen Plant Pathol 84:58–64Google Scholar
  195. Salomone JY, Otten L (1999) Structure and function of a conserved DNA region coding for tartrate utilization in Agrobacterium vitis. FEMS Microbiol Lett 174:333–337PubMedGoogle Scholar
  196. Salomone JY, Crouzet P, De Ruffray P et al (1996) Characterization and distribution of tartrate utilization genes in the grapevine pathogen Agrobacterium vitis. Mol Plant Microbe Interact 9:401–408PubMedGoogle Scholar
  197. Salomone JY, Szegedi E, Cobanov P et al (1998) Tartrate utilization genes promote growth of Agrobacterium spp. on grapevine. Mol Plant Microbe Interact 11:836–838Google Scholar
  198. Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nat Biotechnol 15:363–368PubMedPubMedCentralGoogle Scholar
  199. Savka MA, Black RC, Binns AN et al (1996) Translocation and exudation of tumor metabolites in crown galled plants. Mol Plant Microbe Interact 9:310–313PubMedPubMedCentralGoogle Scholar
  200. Sawada H, Ieki H (1992) Crown gall of kiwi caused by Agrobacterium tumefaciens in Japan. Plant Dis 76:212Google Scholar
  201. Sawada H, Ieki H, Takikawa Y (1990) Identification of grapevine crown gall bacteria isolated in Japan. Jap J Phytopathol 56:199–206Google Scholar
  202. Schroth MN, McCain AH, Foott JH et al (1988) Reduction in yield and vigor of grapevine caused by crown gall disease. Plant Dis 72:241–246Google Scholar
  203. Schulz TF, Bauer C, Lorenz D et al (1993) Studies on the evolution of Agrobacterium vitis as based on genomic fingerprinting and IS element analysis. Syst Appl Microbiol 16:322–329Google Scholar
  204. Sciaky D, Montoya AL, Chilton M-D (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid 1:238–253PubMedGoogle Scholar
  205. Sim ST, Golino D (2010) Micro- vs. macroshoot tip culture therapy for disease elimination in grapevines. FPS Grape Program Newsl Foundation Plant Services, University of California, DavisGoogle Scholar
  206. Slater SC, Goldman BS, Goodner B et al (2009) Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191:2501–2511PubMedPubMedCentralGoogle Scholar
  207. Slater S, Setubal JC, Goodner B et al (2013) Reconciliation of sequence data and updated annotation of the genome of Agrobacterium tumefaciens C58, and distribution of a linear chromosome in the genus Agrobacterium. Appl Environ Microbiol 79:1414–1417PubMedPubMedCentralGoogle Scholar
  208. Smillie C, Garcillan-Barcia MP, Francia MV et al (2010) Mobility of plasmids. Microbiol Mol Biol Rev 74:434–452PubMedPubMedCentralGoogle Scholar
  209. Spencer PA, Tanaka A, Towers GHN (1990) An Agrobacterium signal compound from grapevine cultivars. Phytochem 29:3785–3788Google Scholar
  210. Staphorst JL, van Zyl FGH, Strijdom BW et al (1985) Agrocin-producing pathogenic and nonpathogenic biotype-3 strains of Agrobacterium tumefaciens active against biotype-3 pathogens. Curr Microbiol 12:45–52Google Scholar
  211. Stewart E, Wenner N, Long L et al (2013) Crown gall of grape: understanding the disease, prevention and management. Online Publication. http://plantpath.psu.edu/research/labs/grapes/publications/disease-fact-sheets/Crown-gall-grape.pdf
  212. Stover EW, Swartz HJ, Burr TJ (1997a) Crown gall formation in a diverse collection of Vitis genotypes inoculated with Agrobacterium vitis. Am J Enol Vitic 48:26–32Google Scholar
  213. Stover EW, Swartz HJ, Burr TJ (1997b) Endophytic Agrobacterium in crown gall-resistant and -susceptible Vitis genotypes. Vitis 36:21–26Google Scholar
  214. Süle S (1978) Biotypes of Agrobacterium tumefaciens in Hungary. J Appl Bacteriol 44:207–213Google Scholar
  215. Süle S (1986) Survival of Agrobacterium tumefaciens in Berlandieri x Riparia grapevine rootstock. Acta Phytopathol Entomol Hung 21:203–206Google Scholar
  216. Süle S, Kado CI (1980) Agrocin resistance in virulent derivatives of Agrobacterium tumefaciens harboring the pTi plasmid. Physiol Plant Pathol 17:347–356Google Scholar
  217. Süle S, Lehoczky J, Jenser G et al (1995) Infection of grapevine roots by Agrobacterium vitis and Meloidogyne hapla. J Phytopathol 143:169–171Google Scholar
  218. Süle S, Cursino L, Zheng D et al (2009) Surface motility and associated surfactant production in Agrobacterium vitis. Lett Appl Microbiol 49:596–601PubMedGoogle Scholar
  219. Suzuki K, Tanaka K, Yamamoto S et al (2009) Ti and Ri Plasmids. In: Schwartz E (ed) Microbial megaplasmids, vol 11. Microbiology monographs. Springer, Berlin, Heidelberg, pp 133–147Google Scholar
  220. Szegedi E (1985) Host range and specific L(+)tartrate utilization of biotype 3 of Agrobacterium tumefaciens. Acta Phytopathol Acad Sci Hung 20:17–22Google Scholar
  221. Szegedi E (2003) Opines in naturally infected grapevine crown gall tumors. Vitis 42:39–41Google Scholar
  222. Szegedi E, Kozma P (1984) Studies on the inheritance of resistance to crown gall disease of grapevine. Vitis 23:121–126Google Scholar
  223. Szegedi E, Otten L (1998) Incompatibility properties of tartrate utilization plasmids derived from Agrobacterium vitis strains. Plasmid 39:35–40PubMedGoogle Scholar
  224. Szegedi E, Czakó M, Otten L et al (1988) Opines in crown gall tumours induced by biotype 3 isolates of Agrobacterium tumefaciens. Physiol Mol Plant Pathol 32:237–247Google Scholar
  225. Szegedi E, Korbuly J, Otten L (1989) Types of resistance of grapevine varieties to isolates of Agrobacterium tumefaciens biotype 3. Physiol Mol Plant Pathol 35:35–43Google Scholar
  226. Szegedi E, Otten L, Czakó M (1992) Diverse types of tartrate plasmids in Agrobacterium tumefaciens biotype III strains. Mol Plant Microbe Interact 5:435–438Google Scholar
  227. Szegedi E, Czakó M, Otten L (1996) Further evidence that the vitopine-type pTi’s of Agrobacterium vitis represent a novel group of Ti plasmids. Mol Plant Microbe Interact 9:139–143Google Scholar
  228. Szegedi E, Süle S, Burr TJ (1999) Agrobacterium vitis strain F2/5 contains tartrate and octopine utilization plasmids which do not encode functions for tumor inhibition on grapevine. J Phytopathol 147:554–558Google Scholar
  229. Szegedi E, Bottka S, Mikulas J et al (2005) Characterization of Agrobacterium tumefaciens strains isolated from grapevine. Vitis 44:49–54Google Scholar
  230. Szegedi E, Deak T, Forgács I et al (2014) Agrobacterium vitis strains lack tumorigenic ability on in vitro grown grapevine stem segments. Vitis 53:147–154Google Scholar
  231. Tanaka K, Urbanczyk H, Matsui H et al (2006) Construction of physical map and mapping of chromosomal virulence genes of the biovar 3 Agrobacterium (Rhizobium vitis) strain K-Ag-1. Genes Genet Syst 81:373–380PubMedGoogle Scholar
  232. Tarbah FA, Goodman RN (1986) Rapid detection of Agrobacterium tumefaciens in grapevine propagating material and the basis for an efficient indexing system. Plant Dis 70(70):566–568Google Scholar
  233. Tarbah FA, Goodman RN (1987) Systemic spread of Agrobacterium tumefaciens biovar 3 in the vascular system of grapes. Phytopathol 77:915–920Google Scholar
  234. Thies KL, Griffin DE, Graves CH Jr et al (1991) Characterization of Agrobacterium isolates from muscadine grape. Plant Dis 75:634–637Google Scholar
  235. Thomashow MF, Panagopoulos CG, Gordon MP et al (1980) Host range of Agrobacterium tumefaciens is determined by the Ti plasmid. Nature 283:794–796Google Scholar
  236. Thomashow MF, Knauf VC, Nester EW (1981) Relationship between the limited and wide host range octopine-type Ti plasmids of Agrobacterium tumefaciens. J Bacteriol 146:484–493PubMedPubMedCentralGoogle Scholar
  237. Tolba IH, Zaki MF (2011) Characterization of Agrobacterium vitis isolates obtained from galled grapevine plants in Egypt. Annals of Agricultural Sciences 56:113–119Google Scholar
  238. Tremblay G, Gagliardo R, Chilton WS et al (1987) Diversity among opine-utilizing bacteria: identification of coryneform isolates. Appl Environ Microbiol 53:1519–1524PubMedPubMedCentralGoogle Scholar
  239. van Nuenen M, de Ruffray P, Otten L (1993) Rapid divergence of Agrobacterium vitis octopine-cucumopine Ti plasmids from a recent common ancestor. Mol Gen Genet 240:49–57PubMedGoogle Scholar
  240. Vidal JR, Kikkert JR, Malnoy MA et al (2006) Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res 15:69–82PubMedGoogle Scholar
  241. Wabiko H, Kagaya M, Sano H (1990) Various nopaline catabolism genes located outside the Ti-plasmids in Agrobacterium tumefaciens strains. Microbiol 136:97–103Google Scholar
  242. Wample RL, Bary A, Burr TJ (1991) Heat tolerance of dormant Vitis vinifera cuttings. Am J Enol Vitic 42:67–72Google Scholar
  243. Warren JG, Kasun GW, Leonard T et al (2016) A phage display-selected peptide inhibitor of Agrobacterium vitis polygalacturonase. Mol Plant Pathol 17:480–486PubMedGoogle Scholar
  244. Watanabe S, Sueda R, Fukumori F et al (2015) Characterization of flavin-containing opine dehydrogenase from bacteria. PLoS ONE 10:e0138434PubMedPubMedCentralGoogle Scholar
  245. Webster J, Dos Santos M, Thomson JA (1986) Agrocin-producing Agrobacterium tumefaciens strain active against grapevine isolates. Appl Environ Microbiol 52:217–219PubMedPubMedCentralGoogle Scholar
  246. Wetzel ME, Kim KS, Miller M et al (2014) Quorum-dependent mannopine-inducible conjugative transfer of an Agrobacterium opine-catabolic plasmid. J Bacteriol 196:1031–1044PubMedPubMedCentralGoogle Scholar
  247. Wetzel ME, Olsen GJ, Chakravartty V et al (2015) The repABC plasmids with quorum-regulated transfer systems in members of the rhizobiales divide into two structurally and separately evolving groups. Genome Biol Evol 7:3337–3357PubMedPubMedCentralGoogle Scholar
  248. White CE, Winans SC (2007) Cell–cell communication in the plant pathogen Agrobacterium tumefaciens. Philos Trans. R Soc B: Biol Sci 362:1135–1148Google Scholar
  249. Yang YL, Li JY, Wang JH et al (2009) Mutations affecting chemotaxis of Agrobacterium vitis strain E26 also alter attachment to grapevine roots and biocontrol of crown gall disease. Plant Pathol 58:594–605Google Scholar
  250. Yanofsky M, Lowe B, Montoya A et al (1985a) Molecular and genetic analysis of factors controlling host range in Agrobacterium tumefaciens. Mol Gen Genet 201:237–246Google Scholar
  251. Yanofsky M, Montoya A, Knauf V et al (1985b) Limited-host-range plasmid of Agrobacterium tumefaciens: molecular and genetic analyses of transferred DNA. J Bacteriol 163:341–348PubMedPubMedCentralGoogle Scholar
  252. Young JM, Kerr A, Sawada H (2005) Genus Agrobacterium Conn 1942, 359AL. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematics of archaea and bacteria. The Proteobacteria, vol 2C, 2ed edn. Springer, New York, pp 340–345Google Scholar
  253. Zäuner S, Crespan JE, Burr TJ et al (2006) Inhibition of crown gall induction by Agrobacterium vitis strain F2/5 in grapevine and Ricinus. Vitis 45:131–139Google Scholar
  254. Zheng D, Burr TJ (2013) An Sfp-type PPTase and associated polyketide and nonribosomal peptide synthases in Agrobacterium vitis are essential for induction of tobacco hypersensitive response and grape necrosis. Mol Plant Microbe Interact 26:812–822PubMedGoogle Scholar
  255. Zheng D, Burr TJ (2016) Inhibition of grape crown gall by Agrobacterium vitis F2/5 requires two nonribosomal peptide synthetases and one polyketide synthase. Mol Plant Microbe Interact 29:109–118PubMedGoogle Scholar
  256. Zheng D, Zhang H, Carle S et al (2003) A luxR homolog, aviR, in Agrobacterium vitis is associated with induction of necrosis on grape and a hypersensitive response on tobacco. Mol Plant Microbe Interact 16:650–658PubMedGoogle Scholar
  257. Zheng D, Hao G, Cursino L et al (2012) LhnR and upstream operon LhnABC in Agrobacterium vitis regulate the induction of tobacco hypersensitive responses, grape necrosis and swarming motility. Mol Plant Pathol 13:641–652PubMedGoogle Scholar
  258. Zhu J, Oger PM, Schrammeijer B et al (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895PubMedPubMedCentralGoogle Scholar
  259. Zidarič I (2009) Monitoring of bacteria of the genus Agrobacterium on grapevine in 2006 and 2007. In: 9th Slovenian conference on plant protection, Nova Gorica, Slovenia. Book of lectures and papers, pp 225–229Google Scholar
  260. Zupan J, Muth TR, Draper O et al (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nemanja Kuzmanović
    • 1
    Email author
  • Joanna Puławska
    • 2
  • Lingyun Hao
    • 3
  • Thomas J. Burr
    • 4
  1. 1.Institute for Epidemiology and Pathogen DiagnosticsJulius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)BraunschweigGermany
  2. 2.Research Institute of HorticultureSkierniewicePoland
  3. 3.College of Life Sciences and OceanographyShenzhen UniversityShenzhenPeople’s Republic of China
  4. 4.School of Integrative Plant Sciences, Section of Pathology and Plant-Microbe BiologyCornell UniversityGenevaUSA

Personalised recommendations