Small Noncoding RNAs in Agrobacterium tumefaciens

  • Keunsub Lee
  • Kan WangEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 418)


During the last decade, small noncoding RNAs (ncRNAs) have emerged as essential post-transcriptional regulators in bacteria. Nearly all important physiological and stress responses are modulated by ncRNA regulators, such as riboswitches, trans-acting small RNAs (sRNAs), and cis-antisense RNAs. Recently, three RNA-seq studies identified a total of 1534 candidate ncRNAs from Agrobacterium tumefaciens, a pathogen and biotechnology tool for plants. Only a few ncRNAs have been functionally characterized in A. tumefaciens, and some of them appear to be involved in virulence. AbcR1 regulates multiple ABC transporters and modulates uptake of a quorum-sensing inhibitor produced by plants. RNA1111, a Ti plasmid-encoded sRNA, might regulate the dispersal of the Ti plasmid and virulence. In addition, a chromosomally encoded sRNA Atr35C is induced by the vir gene regulator VirG and its expression is affected by iron, manganese, and hydrogen peroxide, suggesting a possible role in oxidative stress responses and Agrobacterium–plant interactions. Progress in ncRNA functional analysis is slow, likely resulting from innate challenges, such as poor sequence conservation and imperfect base-pairing between sRNAs and mRNAs, which make computational target predictions inefficient. Advances in single-cell-based RNA-seq and proteomics approaches would provide valuable tools to reveal regulatory networks involving ncRNA regulators.



The authors thank Abbagail Johnson, Juan Carlos Martinez-Nicolas, Alan Eggenberger, and Jonah Miller for their assistances. This work was partially supported by the USDA National Institute of Food and Agriculture, Hatch project number #IOW05162, by State of Iowa funds, and by Charoen Pokphand Indonesia.


  1. Aiba H, Adhya S, de Crombrugghe B (1981) Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910PubMedGoogle Scholar
  2. Barrick JE, Sudarsan N, Weinberg Z et al (2005) 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11:774–784CrossRefGoogle Scholar
  3. Becker A, Overlöper A, Schlüter JP et al (2014) Riboregulation in plant-associated-proteobacteria. RNA Biol 11:550–562CrossRefGoogle Scholar
  4. Brantl S (2007) Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10:102–109CrossRefGoogle Scholar
  5. Brantl S, Wagner E, Gerhard H (2002) An antisense RNA-mediated transcriptional attenuation mechanism functions in Escherichia coli. J Bacteriol 184:2740–2747CrossRefGoogle Scholar
  6. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 30:1185–1190CrossRefGoogle Scholar
  7. Caswell CC, Gaines JM, Ciborowski P et al (2012) Identification of two small regulatory RNAs linked to virulence in Brucella abortus 2308. Mol Microbiol 85:345–360CrossRefGoogle Scholar
  8. Cevallos MA, Cervantes-Rivera R, Gutiérrez-Ríos RM (2008) The repABC plasmid family. Plasmid 60:19–37CrossRefGoogle Scholar
  9. Chai Y, Winans SC (2005) A small antisense RNA downregulates expression of an essential replicase protein of an Agrobacterium tumefaciens Ti plasmid. Mol Microbiol 56:1574–1585CrossRefGoogle Scholar
  10. Chevrot R, Rosen R, Haudecoeur E et al (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 103:7460–7464CrossRefGoogle Scholar
  11. Clemente T (2006) Nicotiana (Nicotiana tobaccum, Nicotiana benthamiana) In: Wang K (ed) Agrobacterium protocols, 2nd edn. Humana Press Inc., New Jersey, pp 143–154Google Scholar
  12. Dan Y, Zhang S, Zhong H et al (2015) Novel compounds that enhance Agrobacterium-mediated plant transformation by mitigating oxidative stress. Plant Cell Rep 34:291–309CrossRefGoogle Scholar
  13. De Lay N, Schu D, Gottesman S (2013) Bacterial small RNA-based negative regulation: Hfq and its accomplices. J Bio Chem 288:7996–8003Google Scholar
  14. del Val C, Rivas E, Torres-Quesada O et al (2007) Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics. Mol Microbiol 66:1080–1091CrossRefGoogle Scholar
  15. del Val C, Romero-Zaliz R, Torres-Quesada O et al (2012) A survey of sRNA families in α-proteobacteria. RNA Biol 9:119–129CrossRefGoogle Scholar
  16. Dequivre M, Diel B, Villard C et al (2015) Small RNA deep-sequencing analyses reveal a new regulator of virulence in Agrobacterium fabrum C58. Mol Plant-Microbe Interact 28:580–589CrossRefGoogle Scholar
  17. Gelvin SB (2006) Agrobacterium virulence gene induction. In: Wang K (ed) Agrobacterium protocols, 2nd edn. Humana Press Inc, New Jersey, pp 77–84CrossRefGoogle Scholar
  18. Georg J, Hess WR (2011) cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 75:286–300CrossRefGoogle Scholar
  19. Gerhart E, Wagner H, Vogel J (2014) Approaches to identify novel non-messenger RNAs in bacteria to investigate their biological functions: functional analysis of identified non-mRNAs. In: Hartmann RK, Bindereif A, Schön A, Westhof E (eds) Handbook of RNA biochemistry, 2nd edn. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 719–786Google Scholar
  20. Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Bio 3:1–16Google Scholar
  21. Harfouche L, Haichar F, Achouak W (2015) Small regulatory RNAs and fine-tuning of plant-bacteria interactions. New Phytol 206:98–106Google Scholar
  22. He F, Nair GR, Soto CS et al (2009) Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens. J Bacteriol 191:5802–5813CrossRefGoogle Scholar
  23. He S, Wurtzel O, Singh K et al (2010) Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods 7:807–812CrossRefGoogle Scholar
  24. Hu X, Zhao J, DeGrado WF et al (2013) Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals. Proc Natl Acad Sci USA 110:678–683CrossRefGoogle Scholar
  25. Kitphati W, Ngok-Ngam P, Suwanmaneerat S et al (2007) Agrobacterium tumefaciens fur has important physiological roles in iron and manganese homeostasis, the oxidative stress response, and full virulence. Appl Environ Microbiol 73:4760–4768CrossRefGoogle Scholar
  26. Landt SG, Abeliuk E, McGrath PT et al (2008) Small non-coding RNAs in Caulobacter crescentus. Mol Microbiol 68:600–614CrossRefGoogle Scholar
  27. Lee K, Huang X, Yang C et al (2013) A genome-wide survey of highly expressed non-coding RNAs and biological validation of selected candidates in Agrobacterium tumefaciens. PloS One 8:e70720CrossRefGoogle Scholar
  28. Levine E, Zhang Z, Kuhlman T et al (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol 5(9):e229CrossRefGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefGoogle Scholar
  30. Livny J, Waldor MK (2007) Identification of small RNAs in diverse bacterial species. Curr Opin Microbiol 10:96–101CrossRefGoogle Scholar
  31. Livny J, Teonadi H, Livny M et al (2008) High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. PLoS ONE 3:e3197CrossRefGoogle Scholar
  32. Lloréns-Rico V, Cano J, Kamminga T et al (2016) Bacterial antisense RNAs are mainly the product of transcriptional noise. Sci Adv 2(3):e1501363CrossRefGoogle Scholar
  33. Loh E, Dussurget O, Gripenland J et al (2009) A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139:770–779CrossRefGoogle Scholar
  34. Maes M, Messens E (1992) Phenol as grinding material in RNA preparations. Nucleic Acids Res 20:4374CrossRefGoogle Scholar
  35. Martins BMC, Locke JCW (2015) Microbial individuality: how single-cell heterogeneity enables population level strategies. Curr Opin Microbiol 24:104–112CrossRefGoogle Scholar
  36. Matthysse AG, Yarnall HA, Young N (1996) Requirement for genes with homology to ABC transport systems for attachment and virulence of Agrobacterium tumefaciens. J Bacteriol 178:5302–5308CrossRefGoogle Scholar
  37. Mellin JR, Cossart P (2015) Unexpected versatility in bacterial riboswitches. Trends Genet 31:150–156CrossRefGoogle Scholar
  38. Miranda-Ríos J, Navarro M, Soberón M (2001) A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc Natl Acad Sci USA 98:9736–9741CrossRefGoogle Scholar
  39. Mironov AS, Gusarov I, Rafikov R et al (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756CrossRefGoogle Scholar
  40. Mӧller P, Overlöper A, Förstner KU et al (2014) Profound impact of Hfq on nutrient acquisition, metabolism and motility in the plant pathogen Agrobacterium tumefaciens. PLoS ONE 9:e110427CrossRefGoogle Scholar
  41. Nahvi A, Sudarsan N, Ebert M et al (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043–1049CrossRefGoogle Scholar
  42. Overlöper A, Kraus A, Gurski R et al (2014) Two separate modules of the conserved regulatory RNA AbcR1 and address multiple target mRNAs in and outside of the translation initiation region. RNA Biol 11:624–640CrossRefGoogle Scholar
  43. Pain A, Ott A, Amine H et al (2015) An assessment of bacterial small RNA target prediction programs. RNA Biol 12:509–513CrossRefGoogle Scholar
  44. Palmer KM, Turner SL, Young JPW (2000) Sequence diversity of the plasmid replication gene repC in the Rhizobiaceae. Plasmid 44:209–219CrossRefGoogle Scholar
  45. Romeo T (1998) Global regulation by the small RNA-binding proteins CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330CrossRefGoogle Scholar
  46. Saenkham P, Utamapongchai S, Vattanaviboon P et al (2008) Agrobacterium tumefaciens iron superoxide dismutases have protective roles against singlet oxygen toxicity generated from illuminated Rose Bengal. FEMS Microbiol Lett 289:97–103CrossRefGoogle Scholar
  47. Saliba AE, Santos SC, Vogel J (2017) New RNA-seq approaches for the study of bacterial pathogens. Curr Opin in Microbiol 35:78–87CrossRefGoogle Scholar
  48. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24CrossRefGoogle Scholar
  49. Sesto N, Wurtzel O, Archambaud C et al (2013) The excludon: A new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol 11:75–82CrossRefGoogle Scholar
  50. Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14:618–630CrossRefGoogle Scholar
  51. Sharma CM, Vogel J (2009) Experimental approaches for the discovery and characterization of regulatory small RNAs. Curr Opin Microbiol 12:536–546CrossRefGoogle Scholar
  52. Simons RW, Kleckner N (1983) Translational control of IS10 transposition. Cell 34:683–691CrossRefGoogle Scholar
  53. Smirnov A, Förstner KU, Holmqvist E et al (2016) Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc Natl Acad Sci USA 113:11591–11596CrossRefGoogle Scholar
  54. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891CrossRefGoogle Scholar
  55. Stougaard P, Molin S, Nordström K (1981) RNAs involved in copy number control and incompatibility of plasmid R1. Proc Natl Acad Sci USA 78:6008–6012CrossRefGoogle Scholar
  56. Thomason MK, Bischler T, Eisenbart SK et al (2015) Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli. J Bacteriol 197:18–28CrossRefGoogle Scholar
  57. Tinsley RA, Furchak JRW, Walter NG (2007) Trans-acting glmS catalytic riboswitch: locked and loaded. RNA 13:468–477CrossRefGoogle Scholar
  58. Toledo-Arana A, Dussurget O, Nikitas G et al (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–956CrossRefGoogle Scholar
  59. Tomizawa J, Itoh T, Selzer G et al (1981) Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci USA 78:1421–1425CrossRefGoogle Scholar
  60. Torres-Quesada O, Reinkensmeier J, Schlűter JP et al (2014) Genome-wide profiling of HFq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti. RNA Biol 11:563–579CrossRefGoogle Scholar
  61. Vercruysse M, Fauvart M, Cloots L et al (2010) Genome-wide detection of predicted non-coding RNAs in Rhizobium etli expressed during free-living and host-associated growth using a high resolution tiling array. BMC Genom 11:53CrossRefGoogle Scholar
  62. Wade JT, Grainger DC (2014) Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat Rev Microbiol 12:647–653CrossRefGoogle Scholar
  63. Wagner EG, Simons RW (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 48:713–742CrossRefGoogle Scholar
  64. Wassarman KM, Storz G (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101:613–623CrossRefGoogle Scholar
  65. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 13:615–628CrossRefGoogle Scholar
  66. Wilms I, Voss B, Hess WR et al (2011) Small RNA-mediated control of the Agrobacterium tumefaciens GABA binding protein. Mol Microbiol 80:492–506CrossRefGoogle Scholar
  67. Wilms I, Overlöper A, Nowrousian M et al (2012a) Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens. RNA Biol 9(4):446–457CrossRefGoogle Scholar
  68. Wilms I, Möller P, Stock AM et al (2012b) Hfq influences multiple transport systems and virulence in the plant pathogen Agrobacterium tumefaciens. J Bacteriol 194:5209–5217CrossRefGoogle Scholar
  69. Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517CrossRefGoogle Scholar
  70. Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956CrossRefGoogle Scholar
  71. Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692CrossRefGoogle Scholar
  72. Wright PR, Richter AS, Papenfort K et al (2013) Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci USA 110:E3487–E3496CrossRefGoogle Scholar
  73. Wu HY, Liu KH, Wang YC et al (2014) AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10:19CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Crop Bioengineering CenterIowa State UniversityAmesUSA
  2. 2.Department of AgronomyIowa State UniversityAmesUSA

Personalised recommendations