Advertisement

pp 1-21 | Cite as

Small-Molecule Inhibitors of PARPs: From Tools for Investigating ADP-Ribosylation to Therapeutics

  • Ilsa T. Kirby
  • Michael S. Cohen
Chapter
Part of the Current Topics in Microbiology and Immunology book series

Abstract

Over the last 60 years, poly-ADP-ribose polymerases (PARPs, 17 family members in humans) have emerged as important regulators of physiology and disease. Small-molecule inhibitors have been essential tools for unraveling PARP function, and recently the first PARP inhibitors have been approved for the treatment of various human cancers. However, inhibitors have only been developed for a few PARPs and in vitro profiling has revealed that many of these exhibit polypharmacology across the PARP family. In this review, we discuss the history, development, and current state of the field, highlighting the limitations and opportunities for PARP inhibitor development.

References

  1. Andersson CD, Karlberg T, Ekblad T, Lindgren AEG, Thorsell A-G, Spjut S et al (2012) Discovery of ligands for ADP-ribosyltransferases via docking-based virtual screening. J Med Chem 55(17):7706–7718Google Scholar
  2. Andreone TL, O’Connor M, Denenberg A, Hake PW, Zingarelli B (2003) Poly(ADP-Ribose) polymerase-1 regulates activation of activator protein-1 in murine fibroblasts. J Immunol 170(4):2113–2120. 15 Feb 2003. (American Association of Immunologists)Google Scholar
  3. Bai P (2015) Biology of poly(ADP-Ribose) polymerases: the factotums of cell maintenance. Mol Cell 58(6):947–958Google Scholar
  4. Bai P, Virág L (2012) Role of poly(ADP-ribose) polymerases in the regulation of inflammatory processes. FEBS Lett 586(21):3771–3777. 26 Sep 2012. (Wiley-Blackwell)Google Scholar
  5. Barbarulo A, Iansante V, Chaidos A, Naresh K, Rahemtulla A, Franzoso G et al (2013) Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene 32(36):4231–4242Google Scholar
  6. Barkauskaite E, Jankevicius G, Ahel I (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell 58(6):935–946. 18 Jun 2015. (Elsevier)Google Scholar
  7. Barrio JR, Secrist JA, Leonard NJ (1972) A fluorescent analog of nicotinamide adenine dinucleotide. Proc Natl Acad Sci 69(8):2039–2042Google Scholar
  8. Belousova EA, Ishchenko AA, Lavrik OI (2018) DNA is a new target of PARP3. Sci Rep. Nature Publishing Group 8(1):101. 8 Mar 2018Google Scholar
  9. Bitler BG, Gynecologic ZW (2017) PARP inhibitors: clinical utility and possibilities of overcoming resistance. GynecologiconcologyGoogle Scholar
  10. Bock FJ, Todorova TT, Chang P (2015) RNA Regulation by Poly(ADP-Ribose) Polymerases. Mol Cell 58(6):959–969Google Scholar
  11. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917 Nature Publishing GroupGoogle Scholar
  12. Carter-O’Connell I, Jin H, Morgan RK, David LL, Cohen MS (2014) Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets. J Am Chem Soc 136(14):5201–5204. 9 Apr 2014Google Scholar
  13. Carter-O’Connell I, Jin H, Morgan RK, Zaja R, David LL, Ahel I et al Identifying Family-Member-Specific Targets of Mono-ARTDs by Using a Chemical Genetics Approach. Cell Rep 14(3):621–631Google Scholar
  14. Chambon P, Weill JD, Doly J, Strosser MT, Mandel P (1966) On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem Biophys Res Commun 25(6):638–643Google Scholar
  15. Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11(1):39–43Google Scholar
  16. Cohen MS, Chang P (2018) Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol 14(3):236–243 Nature Publishing GroupGoogle Scholar
  17. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77(1):383–414Google Scholar
  18. Donawho CK, Luo Y, Penning TD, Bauch JL, Bouska JJ, Bontcheva-Diaz VD et al (2007) ABT-888, an orally active poly(ADP-Ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clini Cancer Res 13(9):2728–2737 American Association for Cancer ResearchGoogle Scholar
  19. Durrant LG, Boyle JM (1982) Potentiation of cell killing by inhibitors of poly (ADP-ribose) polymerase in four rodent cell lines exposed to N-methyl-N-nitrosourea or UV light. Chem Biol Interact 38(3):325–338Google Scholar
  20. Ekblad T, Lindgren AEG, Andersson CD, Caraballo R, Thorsell A-G, Karlberg T et al (2015) Towards small molecule inhibitors of mono-ADP-ribosyltransferases. Eur J Med Chem 95:546–551Google Scholar
  21. Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921 Nature Publishing GroupGoogle Scholar
  22. Feng FY, de Bono JS, Rubin MA, Knudsen KE (2015) Chromatin to clinic: the molecular rationale for PARP1 inhibitor function. Mol Cell 58(6):925–934Google Scholar
  23. Ferraris DV (2010) Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem 53(12):4561–4584Google Scholar
  24. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al (2009) Inhibition of poly(ADP-Ribose) polymerase in tumors from BRCAMutation carriers. N Engl J Med 361(2):123–134Google Scholar
  25. Giansanti V, Donà F, Tillhon M, Scovassi AI (2010) PARP inhibitors: new tools to protect from inflammation. Biochem Pharmacol 80(12):1869–1877Google Scholar
  26. Gibbs-Seymour I, Fontana P, Rack JGM, Ahel I (2016) HPF1/C4orf27 Is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol Cell 62(3):432–442Google Scholar
  27. Gibson BA, Conrad LB, Huang D, Kraus WL (2017) Generation and characterization of recombinant antibody-like ADP-ribose binding proteins. Biochemistry 56(48):6305–6316Google Scholar
  28. Gibson BA, Zhang Y, Jiang H, Hussey KM, Shrimp JH, Lin H et al (2016) Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 353(6294):45–50Google Scholar
  29. Golkowski M, Brigham JL, Perera BGK, Romano GS, Maly DJ, Ong S-E (2014) Rapid profiling of protein kinase inhibitors by quantitative proteomics. Med Chem Commun 5(3):363–369 The Royal Society of ChemistryGoogle Scholar
  30. Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F (2010a) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219Google Scholar
  31. Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219. (Elsevier)Google Scholar
  32. Huang JY, Wang K, Vermehren Schmaedick A, Adelman JP, Cohen MS (2016) PARP6 is a regulator of hippocampal dendritic morphogenesis. Sci Rep 6(1):208. 4 Jan 2016. (Nature Publishing Group)Google Scholar
  33. Huang S-MA, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620. 16 Sept 2009. (Nature Publishing Group)Google Scholar
  34. Huang S-MA, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620. 1 Oct 2009. (Nature Publishing Group)Google Scholar
  35. Iansante V, Choy PM, Fung SW, Liu Y, Chai J-G, Dyson J et al (2015) PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat Commun 10(6):7882Google Scholar
  36. Ishida J, Yamamoto H, Kido Y, Kamijo K, Murano K, Miyake H et al (2006) Discovery of potent and selective PARP-1 and PARP-2 inhibitors: SBDD analysis via a combination of X-ray structural study and homology modeling. Bioorg Med Chem 14(5):1378–1390Google Scholar
  37. Jagtap PG, Southan GJ, Baloglu E, Ram S, Mabley JG, Marton A et al (2004) The discovery and synthesis of novel adenosine substituted 2,3-Dihydro-1H-isoindol-1-ones: potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). ChemInform 35(18):81 4 May 2004. (WILEY‐VCH Verlag)Google Scholar
  38. Jiang H, Kim JH, Frizzell KM, Kraus WL, Lin H (2010) Clickable NAD Analogues for Labeling Substrate Proteins of Poly(ADP-ribose) Polymerases. J Am Chem Soc 132(27):9363–9372Google Scholar
  39. Jones P, Altamura S, Boueres J, Ferrigno F, Fonsi M, Giomini C et al (2009) Discovery of 2-{4-[(3 S)-Piperidin-3-yl]phenyl}-2 H-indazole-7-carboxamide (MK-4827): A Novel Oral Poly(ADP-ribose)polymerase (PARP) Inhibitor Efficacious in BRCA-1 and -2 Mutant Tumors. J Med Chem 52(22):7170–7185Google Scholar
  40. Kamal A, Riyaz S, Srivastava AK, Rahim A (2014) Tankyrase inhibitors as therapeutic targets for cancer. Curr Top Med Chem 14(17):1967–1976Google Scholar
  41. Karlberg T, Markova N, Johansson I, Hammarström M, Schütz P, Weigelt J et al (2010) Structural basis for the interaction between tankyrase-2 and a potent Wnt-signaling inhibitor. J Med Chem 53(14):5352–5355Google Scholar
  42. Kawamitsu H, Hoshino H, Okada H, Miwa M, Momoi H, Sugimura T (1984) Monoclonal antibodies to poly(adenosine diphosphate ribose) recognize different structures. Biochemistry 23(16):3771–3777Google Scholar
  43. Kirby IT, Kojic A, Arnold MR, Thorsell A-G, Karlberg T, Vermehren Schmaedick A et al (2018) A potent and selective PARP11 inhibitor suggests coupling between cellular localization and catalytic activity. Cell Chem BiolGoogle Scholar
  44. Knezevic CE, Wright G, Remsing Rix LL, Kim W, Kuenzi BM, Luo Y et al (2016) Proteome-wide profiling of clinical PARP inhibitors reveals compound-specific secondary targets. Cell Chem Biol 23(12):1490–1503Google Scholar
  45. Kraus WL (2015) PARPs and ADP-Ribosylation: 50 Years … and Counting. Mol Cell 58(6):902–910Google Scholar
  46. Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24Google Scholar
  47. Küpper J-H, van Gool L, Müller M, Bürkle A (1996) Detection of poly(ADP-ribose) polymerase and its reaction product poly(ADP-ribose) by immunocytochemistry. Histochem J 28(5):391–395. (Kluwer Academic Publishers)Google Scholar
  48. Langelier MF, Riccio AA, Pascal JM (2014) PARP-2 and PARP-3 are selectively activated by 5’ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res 42(12):7762–75Google Scholar
  49. Langelier M-F, Zandarashvili L, Aguiar PM, Black BE, Pascal JM (2018) NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains. Nat Commun 9(1):844 Nature Publishing GroupGoogle Scholar
  50. Mabley JG, Jagtap P, Perretti M, Getting SJ, Salzman AL, Virág L et al (2001) Anti-inflammatory effects of a novel, potent inhibitor of poly (ADP-ribose) polymerase. Inflamm res 50(11):561–569. (Birkhäuser Verlag)Google Scholar
  51. Mariappan L, Jiang XY, Jackson J, Drew Y (2017) Emerging treatment options for ovarian cancer: focus on rucaparib. IJWH 9:913–924 Dove PressGoogle Scholar
  52. Marsischky GT, Wilson BA, Collier RJ (1995) Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins. J Biol Chem 270(7):3247–3254Google Scholar
  53. Mehrotra P, Hollenbeck A, Riley JP, Li F, Patel RJ, Akhtar N et al (2013) Poly (ADP-ribose) polymerase 14 and its enzyme activity regulates TH2 differentiation and allergic airway disease. J Allergy Clin Immunol 131(2):521–531.e12. (Elsevier)Google Scholar
  54. Menear KA, Adcock C, Boulter R, Cockcroft X-L, Copsey L, Cranston A et al (2008) 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem 51(20):6581–6591Google Scholar
  55. Meyer T, Hilz H (1986) Production of anti-(ADP-ribose) antibodies with the aid of a dinucleotide-pyrophosphatase-resistant hapten and their application for the detection of mono(ADP-ribosyl)ated polypeptides. Eur J Biochem 155(1):157–165. (Blackwell Publishing Ltd)Google Scholar
  56. Morgan RK, Carter-OConnell I, Cohen MS (2015) Selective inhibition of PARP10 using a chemical genetics strategy. Bioorg Med Chem LettGoogle Scholar
  57. Morgan RK, Cohen MS (2015) A clickable aminooxy probe for monitoring cellular ADP-ribosylation. ACS Chem Biol 10(8):1778–1784. 27 May 2015. (American Chemical Society)Google Scholar
  58. Munnur D, Ahel I (2017) Reversible mono-ADP-ribosylation of DNA breaks. FEBS J. Wiley/Blackwell (10.1111); 2017 Nov 8;284(23):4002–16 Google Scholar
  59. Narendja FM, Sauermann G (1994) The use of biotinylated poly(ADP-ribose) for studies on poly(ADP-ribose)-protein interaction. Anal Biochem 220:415–419. (Vienna)Google Scholar
  60. Narwal M, Venkannagari H, Lehtiö L (2012) Structural basis of selective inhibition of human tankyrases. J Med Chem 55(3):1360–1367Google Scholar
  61. Nduka N, Skidmore CJ, Shall S (1980) The enhancement of cytotoxicity of N-Methyl-N-nitrosourea and of y-radiation by inhibitors of poly(ADP-ribose) Polymerase. Eur J Biochem 105(3):525–530. (Blackwell Publishing Ltd)Google Scholar
  62. Oei SL, Griesenbeck J, Buchlow G, Jorcke D, Mayer-Kuckuk P, Wons T et al (1999) NAD+ analogs substituted in the purine base as substrates for poly(ADP-ribosyl) transferase. FEBS Lett 397(1):17–21Google Scholar
  63. Ohmoto A, Yachida S (2017) Current status of poly(ADP-ribose) polymerase inhibitors and future directions. OTT 10:5195–5208 Dove PressGoogle Scholar
  64. Papeo G, Avanzi N, Bettoni S, Leone A, Paolucci M, Perego R et al (2014) Insights into PARP inhibitors’ selectivity using fluorescence polarization and surface plasmon resonance binding assays. J Biomol Screen 19(8):1212–1219Google Scholar
  65. Pinto AF, Schüler H (2015) Comparative structural analysis of the putative mono-ADP-ribosyltransferases of the ARTD/PARP family. Curr Top Microbiol Immunol 384 (Chapter 417):153–166. (Springer International Publishing, Cham)Google Scholar
  66. Purnell MR, Whish WJ. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J 185(3):775–777. 1 Mar 1980. (Portland Press Limited)Google Scholar
  67. Rolli V, O’Farrell M, Ménissier-de Murcia J, de Murcia G (1997) Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching †. Biochemistry 36(40):12147–12154Google Scholar
  68. Rosado MM, Bennici E, Novelli F, Pioli C (2013) Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology (10.1111); 139(4):428–437. 2 Jul 2013. (Wiley/Blackwell)Google Scholar
  69. Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R et al (2013) BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res 19(18):5003–5015 American Association for Cancer ResearchGoogle Scholar
  70. Surowy CS, Berger NA (1985) A, 3-aminobenzamide-resistant labeled protein in [32P]NAD+-labeled cells. Biochimica et Biophysica Acta (BBA)—Molecular. Cell Res 847(3):309–315Google Scholar
  71. Thomas HD, Calabrese CR, Batey MA, Canan S, Hostomsky Z, Kyle S et al (2007) A simple, sensitive, and generalizable plate assay for screening PARP inhibitors. In: Methods in molecular biology. American Association for Cancer Research, pp 945–56Google Scholar
  72. Thorsell A-G, Ekblad T, Karlberg T, Löw M, Pinto AF, Trésaugues L et al (2017a) Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J Med Chem 60(4):1262–1271Google Scholar
  73. Thorsell A-G, Ekblad T, Karlberg T, Löw M, Pinto AF, Trésaugues L et al (2017b) Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J Med Chem 60(4):1262–1271Google Scholar
  74. Tsurumura T, Tsumori Y, Qiu H, Oda M, Sakurai J, Nagahama M et al (2013) Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex. Proc Natl Acad Sci 110(11):4267–4272. 12 Mar 2013Google Scholar
  75. Upton K, Meyers M, Thorsell A-G, Karlberg T, Holechek J, Lease R et al (2017) Design and synthesis of potent inhibitors of the mono(ADP-ribosyl)transferase, PARP14. Bioorg Med Chem Lett 27(13):2907–2911Google Scholar
  76. Venkannagari H, Verheugd P, Koivunen J, Haikarainen T, Obaji E, Ashok Y et al (2016) Small-molecule chemical probe rescues cells from mono-ADP-ribosyltransferase ARTD10/PARP10-induced apoptosis and sensitizes cancer cells to DNA damage. Cell Chem Biol 23(10):1251–1260. (Elsevier)Google Scholar
  77. Voronkov A, Holsworth DD, Waaler J, Wilson SR, Ekblad B, Perdreau-Dahl H et al (2013) Structural basis and SAR for G007-LK, a lead stage 1,2,4-triazole based specific tankyrase 1/2 inhibitor. J Med Chem 56(7):3012–3023Google Scholar
  78. Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT et al (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426Google Scholar
  79. Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, Thorsell A-G et al (2012) Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 30(3):283–288Google Scholar
  80. Wallrodt S, Buntz A, Wang Y, Zumbusch A, Marx A (2016) Bioorthogonally functionalized NAD+ analogues for in-cell visualization of poly(ADP-ribose) formation. Angew Chem Int Ed 55(27):7660–7664Google Scholar
  81. Wang Y, Rösner D, Grzywa M, Marx A (2014) Chain-terminating and clickable NAD+ analogues for labeling the target proteins of ADP-ribosyltransferases. Angew Chem Int Ed Engl 53(31):8159–8162. 28 July 2014. (WILEY-VCH Verlag)Google Scholar
  82. Watson CY, Whish WJD, Threadgill MD (1998) Synthesis of 3-substituted benzamides and 5-substituted isoquinolin-1(2H)-ones and preliminary evaluation as inhibitors of poly(ADP-ribose)polymerase (PARP). Bioorg Med Chem 6(6):721–734Google Scholar
  83. Yamada M, Miwa M, Sugimura T (1971) Studies on poly (adenosine diphosphate-ribose): X. Properties of a partially purified poly (adenosine diphosphate-ribose) polymerase. Arch Biochem Biophy 146(2):579–586Google Scholar
  84. Yoneyama-Hirozane M, Matsumoto S-I, Toyoda Y, Saikatendu KS, Zama Y, Yonemori K et al (2017) Identification of PARP14 inhibitors using novel methods for detecting auto-ribosylation. Biochem Biophys Res Commun 486(3):626–631Google Scholar
  85. Zhan P, Song Y, Itoh Y, Suzuki T, Liu X (2014) Recent advances in the structure-based rational design of TNKSIs. Mol BioSyst 10(11):2783–2799 The Royal Society of ChemistryGoogle Scholar
  86. Zhang J, Snyder SH (1992) Nitricoxidestimulatesauto-ADP-ribosylationof glyceraldehyde-3-phosphatedehydrogenase. Proc Natl Acad Sci U S A 89:9382–9385Google Scholar
  87. Zingarelli B, Salzman AL, Szabó C (1998) Genetic disruption of poly (ADP-Ribose) synthetase inhibits the expression of P-Selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res 13;83(1):85–94. 13 Jul 1998. (American Heart Association, Inc)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Program in Chemical BiologyOregon Health & Science UniversityPortlandUSA
  2. 2.Department of Physiology and PharmacologyOregon Health & Science UniversityPortlandUSA

Personalised recommendations